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PREFACE 

Functional materials are generally characterized as those that themselves 
have specially focused natural properties and functions as magnetism, super-
conductivity, ferroelectricity, piezoelectricity, or energy storage. Their inno-
vation is a multi-stage process of transforming ideas into new / improved pro-
ducts, service or processes. Today, innovative functional materials that underlie 
many applications are critical for information and communication technology, 
healthcare, energy production and storage, transportation, defense and civil 
security, consumer goods, etc. Unlike many materials that are used in large 
quantities as, for example, building or packaging ones, the value of most in-
novative functional materials lies in their enabling capabilities. Their eco-
nomic impact comes from the utility of the devices and systems based on them, 
rather than an economic value of the materials themselves. Vasyl’ Stus Do-
netsk National University and Kyiv Academic University have decided to start 
a joint publication of a series of collective monographs under a common title 
Frontiers in innovative functional materials, which will be published annually 
and cover the current state of a certain important direction in the development 
of the materials. This year’s edition will focus on applied superconductivity. 

Superconducting materials are a separate class of electrical conductors 
which exhibit zero (in some cases, near zero) electrical losses and a number of 
quantum mechanical properties resulting in a lot of novel and unique electrical 
and electronic devices and systems. The field rapidly grew after the discovery 
of the phenomenon in 1911 with important milestones being the 1957 publi-
cation of the Bardeen–Cooper–Schrieffer (BCS) theory, the 1962 prediction 
and observation of Josephson effects, and the discovery at that time of new 
superconducting alloys capable of carrying high currents in high magnetic 
fields. After unexpected finding in the late 1980s of cuprates with transition 
temperatures above the boiling point of liquid nitrogen, superconductivity 
began to be observed in simple benchtop experiments. This discovery caused 
renewed interest to the field of superconductivity and an unprecedented 
amount of relative worldwide research. Just superconductivity has brought 
quantum physics to the scale of the everyday world where a single supercon-
ducting quantum state may extend over a distance of kilometers and even 
more. Superconducting technologies such as magnets, motors, classical and 
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quantum computing, power cables, and so on strongly accelerate the progress 
of science and technology. This progress leading to new unanticipated results 
has been accompanied and supported by advances in fabrication and nanoscale 
patterning technologies 

This book presents four overviews of recent results obtained by their 
authors, as well as our current knowledge in a particular applied supercon-
ductivity area. An effect of disorder on superconductor characteristics is 
reviewed in Chapter 1. In Chapter 2, the focus is on mixing energies and cri-
tical decomposition temperatures of iron-based solid solutions whose pro-
perties in the superconducting state are very different from those of cuprates, 
the most studied high-temperature superconducting compounds. Chapter 3 
presents experimental and theoretical investigations of proximitized nanocom-
posites based on half-metallic manganites – singlet s- or d-wave supercon-
ductors. Finally, within the framework of a self-consistent effective field 
approximation of the time dependent perturbation theory, unusual behavior of 
a hybrid structure formed by normal and superconducting proximitized films 
is discussed in Chapter 4. 

 
Vinnytsia–Kyiv Mikhail BELOGOLOVSKII 
November 2022  
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1. DISORDER-ENHANCED SUPERCONDUCTIVITY 
 

M. Belogolovskii1, 2, 3, A. Shapovalov1, E. Zhitlukhina2, 4, P. Seidel3 
Abstract 

Correlation between superconductivity and disorder remains an intriguing 
and challenging puzzle in condensed matter physics. According to the Bardeen–
Cooper–Schrieffer (BCS) theory, the superconducting phenomenon emerges 
due to the binding of mobile electrons into Cooper pairs that forms a macro-
scopic quantum coherent state. For a weakly disordered system, the well-
known Anderson theorem states that superconductivity is insensitive to disor-
der factors, such as elastic scattering centers, not affecting the time-reversal 
symmetry. Nevertheless, this statement is valid only for initially isotropic, 
homogeneous, and weak-coupling materials. It was shown that for a variety of 
non-uniform superconducting structures, the homogenization of the supercon-
ducting pair potential should result in the degradation of superconducting 
properties. Later, it was found that the naive expectations of unaffected or 
suppressed superconductivity in disordered materials, in general, are inappro-
priate. Due to these findings, nowadays attention is mainly focused on 
measuring and explaining disorder-enhanced superconductivity. This chapter 
updates the research status of such activities and presents some original results 
in this field obtained by the authors. The materials discussed below are classi-
fied according to their structural order. Two extreme cases are crystalline 
binary alloys with a periodic translation of a single unit cell (long-range order) 
and amorphous compounds with the appreciable degree of short-range or even 
medium-range order and the lack of inherent periodicity. Concerning solid-
solution crystalline binary alloys, we focus on an enhancement of properties 
unexpected for a simple mixture of constituent elements. We argue that the 
amorphous structure made the requirement of substrate-film lattice matching, 
typical for crystalline layers, unnecessary thus providing good adhesion of 
amorphous films to different substrates. An intermediate case between the two 
extremes is high-entropy alloys, multi-component materials in which five or 
more elements randomly occupy a certain crystallographic site. Such highly 
atomic-disordered state produces many superior mechanical and / or thermal 
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characteristics (in particular, superconducting electrical properties), which are 
robust against atomic disorder or extremely high pressure. We are also dis-
cussing an effect of the structural disorder on the vibrational spectrum of super-
conducting materials and discuss possible explanation of disorder-enhanced 
superconducting properties in the framework of traditional phonon-mediated 
strong-coupling superconductivity. 

 
---------------------------------------- 
 Mikhail Belogolovskii 
belogolovskii@ukr.net 
 
1 Kyiv Academic University, Academician Vernadsky Blvd. 36, 03142 Kyiv, Ukraine 
2 Vasyl' Stus Donetsk National University, 600-richchia vul. 21, 21021 Vinnytsia, Ukraine 
3 Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 3, 07743 Jena, 

Germany 
4 O. O. Galkin Donetsk Institute for Physics and Engineering, National Academy of Sciences of 

Ukraine, Nauki Ave. 46, 03028 Kyiv, Ukraine 
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1.1 Introduction 

First study of the disorder effect on superconductivity was carried out in 
the 1930s by Shalnikov [1.1]. This activity was revived again in the late 1950s 
by Anderson [1.2] and Abrikosov and Gor’kov [1.3]. According to Anderson, 
dilute elastic scattering centers (impurities, dislocations, etc.), which could not 
affect the time-reversal symmetry, have no significant effect on thermodyna-
mic properties and pair potential of three-dimensional s-wave BCS supercon-
ductor with a good crystalline structure (this statement is known in the literature 
as Anderson theorem). In contrast, as shown by Abrikosov and Gor’kov, 
magnetic impurities of arbitrary concentration may destroy superconductivity. 
However, when disorder reaches a critical level that can induce the locali-
zation of the electron wave function, a quantum phase transition, usually 
termed a superconductor-insulator transition, is emerging [1.4, 1.5]. There-
fore, study of dirty superconductors gives a unique possibility to analyze 
competition between Cooper pairing of electrons and their Anderson loca-
lization arising due to intensive scattering processes from dopant centers. 

How does superconductivity behave when the amount of disorder in the 
studied material is increasing? The answer to this question has been discussed 
in a number of reviews [1.6, 1.7, 1.8]. It was found that similar to many 
physical and chemical characteristics such as mechanical, electrical, magnetic, 
thermal, etc. superconducting properties reveal marked changes with disorder, 
as well. New aspects of this problem include, for example. quasi-1D systems 
which can exhibit long-range order at low temperature, but are heavily in-
fluenced by disorder [1.9, 1.10] and quasi-2D monolayers where the unusual 
enhancement of Tc was attributed to the multifractality of electron wave-
functions [1.11]. Some important conclusions can be drawn by analyzing ex-
periments with strongly correlated superconductors, in particular, with high-
Tc cuprates. A sharp increase in the critical temperature was found to be 
accompanied by the suppression of charge density waves, which indicates a 
strong competition between them and a still unknown mechanism of the high-
temperature phenomenon [1.12]. On the other hand, the Van Hove scenario 
for HTSC [1.13, 1.14] was shown to be valid even for weak disorder [1.15]. 

As a result of joint efforts, our understanding of dirty superconductors has 
changed a lot over the past few decades. In particular, it became evident that 
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the Anderson theorem is applied only to initially isotropic, homogeneous, and 
weak-coupling materials. A specific case of a system without translational 
symmetry where the Anderson theorem is not satisfied is a normal-metal (N) 
film proximitized to a superconductor [1.16]. Its inapplicability shows up, 
first, in the homogenization of pair potentials over the N and S layers that 
becomes evidently lower than that in a pure S material. This conclusion, in 
fact, is valid not only for N/S bilayers but also for a variety of inhomogeneous 
weakly disordered superconducting structures. It is remarkable that the results 
by Arnold [1.16] for very thin N and S layers bear a striking resemblance to 
the McMillan tunneling model [1.17] of the proximity effect for two N and 
S layers separated by a tunnel barrier. The correspondence arises from a si-
milar treatment of lifetime effects. It is also not surprising that analogous 
expressions are appropriate for multiband superconductors with nonmagnetic 
impurity scattering treated within the Born approximation [1.18, 1.19]. As in 
the common case of an anisotropic superconductor [1.20], interband scattering 
reduces the critical temperature Tc and finally leads to a single order parameter, 
in overall agreement with previous studies [1.21].  

In general, the effect of impurities and / or defects on the properties of a 
primary superconductor is strongly material-dependent, compare the data for 
ferro-pnictides [1.22], amorphous molybdenum silicon these films [1.23], nio-
bium titanium nitride films [1.24], oxide interfaces [1.25], or nanostructured 
Sn samples [1.26]. In most cases, the traditional design of novel supercon-
ductors started from a primary or host substance, to which a new component 
or components were added for improving the material performance. The above 
naive expectations that in this case Tc should remain unaffected or can only 
decrease, was found inappropriate, and nowadays a lot of attention is focused 
just on measuring and explaining disorder-enhanced superconductivity. For 
example, many of actual transition-metal alloys with attractive supercon-
ducting properties have been found to be located in the centers of the phase 
diagrams rather than close to its corners. The second subsection of the over-
view illustrates this observation with an example of binary Mo-based alloys. 
Another case of extreme disorder is an amorphous (structurally disordered, 
i. e., disordered in the spatial arrangement of atoms) superconducting phase 
stabilized in the form of thin films by some metals and metallic alloys. 
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The discovery of superconductivity in the amorphous phase dates back to 
early 1950’s when quench condensed films of amorphous Bi were reported to 
be superconducting with Tc = 6.1 K [1.27] in contrast to crystalline Bi that is 
a superconductor with the critical temperature of 0.53 mK [1.28]. It was 
claimed that the superconductivity in amorphous Bi results from its higher 
packing density than crystalline Bi [1.29] but convincing experimental evi-
dence was absent. Later it was found that some elements which are non-
superconducting at all, such as Be [1.30], become superconducting in the 
amorphous state [1.29, 1.31]. At the same time, other elements like Pb are 
good superconductors in the crystalline phase while disorder lowers Tc. We 
present some results for amorphous superconducting compounds including 
original ones and discuss them in the third subsection of the chapter. 

From the fundamental point of view, the most important task in the study 
of disorder-enhanced superconductivity remains to answer the question – why 
Tc‘s of highly disordered superconductors quite often exceed those of the 
crystalline counterparts. In the paper [1.32], the authors proposed two possible 
mechanisms for increasing the superconducting transition temperature Tc by 
nonmagnetic disordering factors in both conventional and unconventional 
(sign-changing gaps) superconductors. In the first scenario, relevant to multi-
band systems, the origin of the Tc growth is the density-of-states enhancement 
driven by resonant states in near-Fermi-level bands while the second one 
applicable to systems close to localization it is related to random disorder-
generated local density-of-states modulations. In the third subsection of the 
overview, we argue that superconductivity in such materials is usually strong-
ly (or at least moderately) coupled, with the electron-phonon coupling para-
meter λ ≥ 1 and the superconducting gap ∆ much larger than its value predicted 
by the BCS theory: ∆ = 1.76kBTc. It means that we should look for the fun-
damental explanation of these findings within the framework of the Eliashberg 
theory of strong-coupling phonon-mediated superconductivity [1.31], using 
details depending on the nature of the disorder and superconductor pairing 
symmetry. This issue is discussed at the end of the third subsection. 

The novel tendency in studying disorder-enhanced properties is concent-
rated not on the materials formed by a single host and an additional component 
as those discussed in the second subsection but rather on compounds with 
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multiple elements which crystallize as solid solutions. In such systems known 
as high-entropy alloys (HEA), the structural order / disorder can be charac-
terized through the entropy, a measure of the randomness. Such alloys com-
posed typically of four or more components are usualy characterized by simple 
structures with extremely high chemical disorder and high entropy of mixing 
stabilizing the crystal structure and resulting in highly tunable proper-
ties [1.33−1.36]. The highly atomic-disordered HEA state produces many 
superior mechanical and / or thermal characteristics. Superconductivity has 
become one of the most important topics in this field since the discovery of a 
bcc HEA superconductor in 2014 [1.37]. Our fourth subsection is dealing with 
superconducting high-entropy alloys, which are expected to be useful for 
realizing the relationship between crystalline and amorphous superconductors.  

 
 
1.2 Solid-solution crystalline binary alloys: is the rigid band 

 approximation adequate? 

A binary superconducting alloy is a mixture of two chemical elements of 
which at least one is a metal element forming a substance with conducting 
characteristics. The most common and oldest alloying process is performed by 
heating the base metal beyond its melting point and then dissolving the solutes 
into the molten liquid even if the melting point of the solute is far greater than 
that of the base. By adding another element to a metal, differences in the size 
of the atoms create internal stresses in the lattice of the metallic crystals, which 
sometimes enhance its properties. 

Understanding electronic characteristics of binary random alloys has 
become a topic of considerable interest in solid-state physics. The first two 
approximations used in the study of these compounds were rigid band and 
virtual crystal approximations, which are valid for the case when a periodic 
crystal structure of the materials discussed is well defined. Even oversimpli-
fied, they can nevertheless suggest a way allowing the development of alloys 
with properties tuned for specific applications, in particular, when they depend 
on variations in Fermi surface topology induced just by alloying. The rigid 
band model, in which the band structure and density of states of the solvent 
metal remain unchanged upon alloying with a solute allows predict these 
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variations [1.38]. Although the rigid band behavior has been confirmed for 
many nearly free electrons and some systems with transition metals [1.39–
1.41], its applicability remains questionable, especially when the solute 
strongly perturbs the local electronic structure of the solvent [1.42]. From this 
viewpoint, understanding the physical properties of simple binary random 
alloys is very useful for facilitating a detailed picture of the development of 
conduction states in complex alloys containing transition metals. As an 
example, we will discuss below the evolution of a band structure and the Fermi 
surface of Mo1-xRex alloy in normal and superconducting states as functions of 
its composition.  

As for the normal state, we refer to the work [1.43] where the authors 
presented detailed experimental and theoretical study of the electronic struc-
ture of Mo1-xRex random alloys. They measured electronic band dispersions 
for clean and hydrogen-covered Mo1-xRex alloys with x = 0 – 0.25 using angle-
resolved photoemission spectroscopy and performed numerical calculations 
by the Korringa–Kohn–Rostoker coherent-potential-approximation method, a 
simplest self-consistent approximation. In the latter approach, one regards the 
total scattered wave as composed of contributions from each atom while the 
effective wave incident on a given atom excludes its own effect. The result 
is a product of the atomic t-matrix and the effective wave [1.43]. As for the 
superconducting state, its analysis is based on our previous publications [1.44–
1.45]. 

Re (5d56s2) has one more electron per atom than Mo (4d55s1), which in 
the rigid band approximation would be shared with the molybdenum host. The 
authors [1.43] found that with increasing Re concentration, bulk and surface 
electronic bands are shifting away from the Fermi energy EF due to two 
factors: (i) the aforementioned charge donation and (ii) increase in the 
occupied bandwidth, most notably for bands more than 2 eV below EF, see 
Fig. 1.1. However, this effect is not uniform, with larger shifts observed at 
higher binding energy. Two other deviations from rigid band behavior were as 
follows: (i) a surface-localized state shifted in a notably non-rigid way and (ii) 
spin-orbit interaction impact increased with growing rhenium concentration, 
again leading to non-rigid modifications of some bands. 
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Fig. 1.1 – Configurationally averaged density of electronic states of Mo1-xRex random 
alloys (x = 0.00, 0.05, 0.15, and 0.25) calculated using the Korringa–Kohn–Rostoker 

coherent-potential-approximation method. Adapted from Fig. 1 in Ref. [1.43] 
 

The authors [1.43] also revealed an electronic topological transition which 
may impact many physical properties of alloys. It occurs when the Fermi sur-
face changes its topology as EF is moving through a van Hove singularity in 
the density of states N(EF). This idea is traced back to the work by Ilya Lifshitz 
who related a change in the topology of the Fermi surface E(p) = EF of a pure 
metal subjected to elastic strains to anomalies in thermodynamic quantities of 
metals [1.46−1.48]. The effect is arising due to the continuous variation of some 
parameter (e. g., pressure or impurity concentration), due to which the diffe-
rence z = EF − Ec between the Fermi energy EF and the critical energy Ec, at 
which the topology of the constant energy surface is changing, passes through 
zero continuously. This leads to the modification in the Fermi-surface connec-
tivity, for example, an appearance of a new cavity or the rupture of a con-
necting neck with varying external parameter. At the temperature T = 0 K, the 
grand thermodynamic potential Ω acquires an irregular correction δΩ = −α|z|5/2 
and that is why this effect was also called the phase transition of the 2.5-or-
der [1.47], referring in this case to the Ehrenfest terminology. At kBT ≪ EF, 
related anomalies manifest themselves not only in thermodynamic character-
ristics of metals, but also in superconducting parameter-versus-z dependen-
cies, as was evidenced by Brandt et al. in the paper [1.49] just by analyzing 
pressure induced changes in the properties of superconducting Tl–Hg alloys. 

In fact, topology and alloying are often closely intertwined in condensed 
matter physics. In both cases, one seeks to characterize not the details of a 
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particular band structure or disorder configuration, but the basic physics of the 
phenomenon. Returning to the Mo1-xRex alloys, we are referring to detailed 
first-principles calculations of their bulk electronic structure by Skorodumova 
et al. [1.41] who predicted two Lifshitz topological transitions at 2 % and 6 % 
Re concentrations occurring near the middle of the N–H line in the bulk 
Brillouin zone. Comparison of Fermi surfaces for pure Mo and Mo0.75Re0.25 in 
Ref. [1.43] confirmed it by revealing the van Hove singularity at 5 % rhenium 
concentration, i. e., very close to the theoretical predictions [1.41]. Recent re-
sults of resonant photoemission spectroscopy experiments [1.50] proved the 
existence of two electronic topological transitions at critical Re concentrations 
of xc1 = 0.05 and xc2 = 0.11. 

It is known that the addition of rhenium to molybdenum improve the 
ductility of the material. The stress required to produce a fixed amount of strain 
higher than 3 % is minimal around x = 0.07 [1.51]. Smith et al. [1.52] found 
phonon softening along the N–H direction of the Brillouin zone when Mo-Re 
alloys undergo the Lifshitz transition and it is just the location of a Fermi 
surface pocket that appears when more than 5 at. % of rhenium is added to 
molybdenum [1.43]. Electronic states of the small group of carriers are loca-
lized due to the random potential introduced in the system when the compo-
sition is changed [1.53]. This effect is expected to be very small and its de-
tection should require extremely sensitive techniques. Nevertheless, Ignat’e-
va [1.53] revealed large oscillations in the pressure dependence of Tc and in 
temperature derivatives of the normal-state thermoelectric power and resisti-
vity. She argued that the localization of electrons filling the new states arising 
due to the topological changes of the Fermi surface causes the observed oscilla-
tions in related characteristics. The localized states against a background conti-
nuum give rise to Fano resonance in photoemission spectroscopy measurements 
detected in the Mo1-xRex system for x > xc1 = 0.05 [1.50]. This observation was 
interpreted as the result of the electron-like states localization in the newly 
appeared Fermi pocket. Next, let us discuss how the changes in the topology 
influence superconducting properties of the Mo-Re alloys and why it may 
considerably enhance the transition temperature to the superconducting state. 

From the superconductivity viewpoint, it is important that the proximity 
of the Fermi surface to van Hove singularities drastically enhances interaction 
effects and can lead to the emergence of a flat band, where all the states have 
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the same energy. Since the flat band has a huge density of electronic states, 
this may considerably increase the transition temperature Tc. Notice that in 
ordinary superconductors, the singular density of electronic states emerging at 
the transition point generates non-analytical behavior of superconducting pa-
rameters as a function of the external factor modifying the shape of the Fermi 
surface [1.47]. In the paper [1.54], the authors presented a detailed study of 
temperature and magnetic field dependences of the magnetization M and heat 
capacity C in Mo1-xRex alloys with x = 0.25 and 0.4, i. e., above two topo-
logical transitions in the Fermi surface. Notice that the Mo0.6Re0.4 alloy was 
identified as a strong coupling superconductor with the ratio of an energy gap 
∆0 = ∆(T = 0) to the critical temperature 2∆0/kBTc = 5.0, that is well above the 
value of 3.52 predicted by the BCS theory of a weakly coupled superconductor 
(Fig. 1.2). The normalized values ΔCS/γTc of the heat capacity ΔCS jump at Tc 
(γT is an electronic contribution to the normal-state heat capacity) are about 1.7 
and 2.0 for the Mo0.75Re0.25 and Mo0.60Re0.40 samples studied in the work [1.54], 
respectively. These values are also substantially higher than the BCS value of 
1.43 pointing out again that superconductivity in the binary random Mo1-xRex 
alloys with x > xc2 is at least nontrivial as it follows from the electron-phonon 
coupling constant-vs-Re concentration dependence, see Fig. 1.2. 
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Fig. 1.2 – Variation of the electron-phonon coupling constant λ as a function  
of Re concentration x in Mo1-xRex alloys. Adapted from Fig. 5 in Ref. [1.55] 

Fig. 1.1 demonstrates the fundamental possibility of using the rigid band 
model for a qualitative description of changes in the electronic structure of 
random binary alloys with increasing the solute concentration, while Fig. 1.2 
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shows a strong enhancement of the electron-phonon interaction coupling for 
large Re concentration. The question arising is if it is possible to predict minor 
details in the electronic structure, such as relatively small changes in the Fermi 
surface topology. For example, do predicted two Lifshitz topological transi-
tions at small Re concentration [1.41] really exist? As was explained above, 
the opening of a new cavity in the Fermi surface can lead to the appearance of 
an additional energy gap in the spectrum of single-particle excitations of a 
superconductor studied. Can we detect it?  

Unfortunately, the identification of a second gap can be extremely prob-
lematic. Fig. 1.3 exhibits the temperature dependence of the ratio ΔCS/γTc for 
two Mo-Re compounds studied in Ref. [1.54]. Dotted lines in Figs. 1.3a and 
1.3b represent CS(T) behavior in the superconducting state with a single 
isotropic superconducting gap Δ0/kB = 19.0 ± 0.5 K for the Mo0.75Re0.25 alloy 
and Δ0/kB = 26.5 ± 0.6 K for the Mo0.60Re0.40 alloy. 

 
Fig. 1.3 – Temperature dependences of the electronic heat capacity  

in the superconducting state plotted as a function of the ratio T/Tc for Mo0.75Re0.25 (a) 
and Mo0.60Re0.40 (b) samples. The lines are fits to the experimental data (open 

symbols) within single-gap (dotted lines) and two-gap (solid lines) theoretical 
approaches. Adapted from Fig. 7 in Ref. [1.54] 
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We can see that experimental values of CS(T)/γTc at low temperatures are 
systematically higher than calculated ones. Realizing this, the authors of 
Ref. [1.54] tried to fit the experimental data using an equation for a two-band 
superconductor 

S Ss Sl

c s c l c

( ) ( ) ( )(1 )C T C T C T
T T T

α α
γ γ γ

= + −  (1.1) 

with CSs(T) and CSl(T), contributions to heat capacity from a small Δs and 
a large Δl superconducting gaps, α = γs/(γs+γl) defines the fraction of the small 
gap, γs,l are related normal-state coefficients. They found that the resulting 
lines are perfectly consistent with the measured CS(T) data, see solid lines in 
Fig. 1.3 where the values of Δs, Δl, and α are specified. Notice that a clear 
deviation from the single-gap behavior was observed already in an earlier 
study of the temperature dependence of electronic heat capacity in Mo0.60Re0.40 
alloy [1.56] but was ignored. Now it is evident that the discrepancy between 
theory and experiment can be removed by taking into account the presence of 
two superconducting gaps. 

Magnetization-vs-external magnetic field measurements at various tem-
peratures made it possible to estimate the upper critical field Hc2(T) depen-
dencies as the field in the isothermal M-H curves at which the irreversible 
(giving rise to a hysteresis loop) magnetization M reduces to zero. It was found 
that the temperature impact on Hc2 estimated using the Werthamer–Helfand–
Hohenberg model matches with the experimental curves only at temperatures 
close to Tc. The lower critical field Hc1, below which a type-II superconductor 
is in the Meissner state, was found analyzing dM(H)/dH dependencies. For a 
superconductor in the local limit with ξ(0) << λ, ξ(0) and λ are coherence 
length and London penetration depth, the normalized superfluid density S( )Tρ  
reads as [1.54] 

2
c1

S 2
c1

(0) ( )( )
( ) (0)

H TT
T H

λρ
λ

= = . (1.2) 

For a single gap superconductor, S( )Tρ  is given by [1.57] 

S S0
( ) 1 2 ( , )( ( , ) / )T N T df T d dρ ε ε ε ε

∞
= + ∫  (1.3) 
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with the Fermi-Dirac distribution function f(ε) and the normalized density 
of single-particle states in a superconductor [1.58] 

( )2 2
S( , ) Re / ( )N T Tε ε ε= − ∆ , (1.4) 

ε = E – EF. Dotted lines in Figs. 1.4a and 1.4b show the temperature de-
pendence of normalized superfluid density calculated using Eq. (1.3) for an iso-
tropic single-gap superconductor with Δ0/kB = 15.5 ± 0.5 K for the Mo0.75Re0.25 
alloy and Δ0/kB = 20.5 ± 0.4 K for the Mo0.60Re0.40 alloy. Similar to Fig. 1.3, the 
estimated theoretical curve matches well with the experimental data at high 
temperatures while a marked deviation observed at low temperatures indicates 
possibility of the two-gap superconductivity. Acting like above for the heat 
capacity exhibiting an anomalous feature in its temperature dependence, see 
Eq. (1.1), the authors [1.54] got an excellent agreement between the measured 
and calculated curves with the parameters Δs, Δl, and α indicated in Fig. 1.4. 
These values noticeably differ from those in Fig. 1.3. Possibly, this is caused 
by the fact that the superfluid density estimated from Hc1 is a local property 
whereas heat capacity is a bulk (that is, averaged) characteristic [1.54]. 

Nevertheless, the above arguments supporting a two-band / two-gap sce-
nario in superconducting random Mo-Re alloys (Figs 1.3 and 1.4) can only 
hint at the presence of two superconducting order parameters while it would 
be desirable to get the related information from the experiments that could 
provide direct evidence of the two gaps presence without additional calcu-
lations. Let us emphasize, that tunneling and point-contact spectroscopies 
schematically shown in Fig. 1.5 are exactly such techniques allowing one to 
interpret the measured differential conductance characteristics qualitatively 
without resorting to complicated model concepts [1.58]. As well known, re-
lated spectroscopic setups usually consist of two metallic electrodes (at least, 
one of them is in the superconducting state) divided by resistive nanometer-
scale region. Its task is to take over the entire voltage drop V applied to the 
setup creating thus a difference ∆µ = µL – µR in chemical potentials of the 
left (L) and right (R) electrodes. Modifying the drop V value, we are changing 
the difference ∆µ = eV and thereby are able to probe unoccupied and occupied 
states in the excitation spectra of the conducting electrodes. 
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Fig. 1.4 – Temperature dependences of the superfluid density of states plotted  

as a temperature function for Mo0.75Re0.25 (a) and Mo0.60Re0.40 (b) samples.  
The lines are fits to the experimental data (open symbols) within single-gap (dotted 

lines) and two-gap (solid lines) theoretical approaches. Adapted from Fig. 6 in Ref. [1.54] 
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Fig. 1.5 – Simulated differential conductance–versus–voltage curves  

for zero-temperature coherent quantum transport across a one-dimensional normal 
metal-barrier-superconductor trilayer with various barrier transparences.  

Their shapes are controlled by the parameter Z. Two extreme limits, corresponding  
to a point contact (Z = 0) and a tunnel junction (Z >> 1), are illustrated schematically  
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Applying this idea, two extreme junction-spectroscopy techniques (tun-
neling and point-contact) differ only in the ways of creating the interlayer 
between two metals often called a weak link. A simplest, from the realization 
viewpoint, version of the high-resistive interlayer is a narrow constriction 
between two wide electrically conducting regions, whose width is comparable 
to the electronic wavelength λF, see the inset in Fig. 1.5. The conductance G of 
such device known as a quantum point contact can be as small as G0 = 2e2/h ≈ 
77.5 μS, the universal conductance quantum [1.59]. This relation is valid for 
truly atomic dimensions when two bulk metals, reservoirs of electrons in local 
equilibrium, are connected by a quasi-one-dimensional single-atom constric-
tion [1.60]. The G value grows with increasing the width w of the electron 
waveguide through which a small integer number of transverse modes N ≈ 
2w/λF can propagate at the Fermi level EF. 

Tunneling spectroscopy that played a central role in the experimental 
verification of the microscopic theory of superconductivity in traditional 
superconductors represents an opposite case of the interface transparency. 
Conventional tunnel junction shown schematically as an inset in Fig. 1.5 is 
planar with a several nm-thick oxide interlayer, an area prohibited by classical 
mechanics for electrons at the Fermi level of electrodes and for this reason 
often named a barrier. Hence, the difference between two main techniques is 
to a great extent quantitative, namely, transition probabilities for charges to be 
transferred between junction electrodes in a certain quantum channel is near 
unity for the point-contact spectroscopy while it is much less than unity in the 
tunneling approach [1.61]. 

The most popular model to calculate the differential conductivity G(V) = 
dI(V)/dV (the derivative of the current I across the contact with respect to the 
voltage V applied to it) of the normal metal-barrier-superconductor contact 
with a barrier of arbitrary transparency is that proposed by Blonder, Tinkham, 
and Klapwijk (BTK) [1.61]. The model assumes ballistic and one-dimensional 
character of the charge transport through the contact of N and S metals with a 
nanometer-thin scattering potential localized at the N-S interface. Its effect is 
usually considered by introducing a potential barrier with a thickness dB and 
the decay length lB inside it. For a strong inequality dB << lB, transmission t 
and reflection r amplitudes read t = i/(i – Z) and r = Z/(i – Z), where i is the 
imaginary unit, see the details in the papers [1.62, 1.63]. 
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Ultimately, the parameter Z determines the probability of electron trans-
mission through the barrier 21/ (1 )D Z= +  in the normal state as well as its pro-
bability to be reflected back 2 21 / (1 )R D Z Z= − = + . The way of further calcula-
tions aimed to find the ratio of differential conductance in superconducting 
GS(V) and normal GN states is described in detail in the work [1.63]. Possible 
effect of inelastic-scattering processes in the superconductor is taken into 
account by introducing a constant imaginary part in the electronic energy E → 
E + iΓ, where Γ is known as the Dynes parameter [1.64]. As a result, we have 
three adjustable parameters for a single-band superconductor, the energy gap ∆, 
the interface scattering efficiency Z, and the Dynes parameter Γ. In the case of 
a two-band superconductor, this number increases to seven: ∆l, ∆s, Zl, Zs, Γl, 
Γs and, finally, the weighting factor wl < 1 (ws = 1 - wl), which specifies the 
relative contribution of the two bands to the measured curve G(V) = wlGl(V) + 
wsGs(V) [1.64].  

In point contacts, the channels with the highest transmission probability 
determine the current along the device and, as a result, the scattering strength 
Z is nearly zero. In this case, for an electron (hole) incident on the interface 
from the N side at energies less than the superconductor energy gap ∆, 
the ballistic throughput across an N/c/S point contact (c is the constriction) 
is dominated by a quantum process called Andreev reflection. Its details are 
as follows. Electron (hole), arriving from the N side, forms a Cooper pair in 
the S electrode reflecting back a hole (electron) from the electron band with 
opposite spin and group velocity to the incident electron (hole) but with almost 
equal momentum. It is clear that this effect causes an enhancement of the 
conductance below the superconducting energy gap ∆, and the ratio of below-
gap and above-gap conductance values equals 2 for an ideal point contact with 
a conventional superconductor (Fig. 1.5). 

With increasing Z, the shape of the differential conductance G(V) for an 
N/I/S trilayer transforms from a flat section at V < ∆/e to peaks at V = ∆/e. 
From Fig. 1.5 illustrating these changes at very low temperatures, it is clear 
that the Andreev-reflection mechanism, that defines the shape of the conduc-
tance spectrum for a point contact with Z ≈ 0, as well as the tunneling transport 
allow us to interpret measured G(V) curves and to reveal qualitatively the 
energy gap value without involving complex model concepts. 
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Fig. 1.6 – Normalized differential conductance–versus–voltage curve measured for a 

representative point-contact sample formed by a silver tip and a random Mo0.52Re0.48 
alloy film (dots) compared with a fitting curve (solid line). The two energy gaps differ 
markedly: Δs = 0.22 meV and Δl = 0.8 meV, the contribution of the band with a larger 

gap Δl is dominant, the measurement temperature was 4.2 K 
 
We have performed two different kinds of the junction-spectroscopy 

experiments using Mo-Re based tunneling trilayers [1.44] and point-con-
tacts [1.45]. In the latter case, the N electrode was made of silver, its point 
contacts with the studied Mo-Re alloy were created both on film and bulk 
samples. Thin alloy layers with an approximately equal concentration of com-
ponents, thicknesses ranging from 90 to 150 nm, and critical temperatures 
about 9 K were obtained by magnetron sputtering of a Mo0.52Re0.48 target. 
Structure and phase composition of the films were controlled by electron 
microscopy and electron diffraction, as well as by X-ray diffraction. The con-
centration of alloy components in the films determined using X-ray photo-
electron spectroscopy with an accuracy of 5–6 at. % well corresponded to the 
target composition. Grain size spread was tiny. This uniformity revealed itself 
in high films resistance to structural transformations and stable electro-
physical properties during thermal cycling. The measured differential conduc-
tance spectra dI(V)/dV of contacts based on Mo-Re alloys with approximately 
equal component contents demonstrated the presence of two energy gaps, 
larger Δl and smaller Δs ones. Typical G(V) curve shown in Fig. 1.6 represents 
a sum of two similar characteristics of N/S contacts with an almost ideal 
interface. The fitted parameters are indicated in Fig. 1.6. Notice that due to the 
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small area of contacts, we got an information only from individual micro-sized 
crystallites with different crystallographic directions, while, say, measure-
ments of the electronic heat capacity for a molybdenum-rhenium alloy [1.54] 
provide characteristics averaged over all directions. Local changes in super-
conducting properties in the near-surface region may be a source of the diffe-
rences between surface-sensitive techniques and those dealing with the bulk. 
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Fig. 1.7 – Normalized differential conductance–versus–voltage curve measured  

for a representative Pb/Al oxide/Al/Mo0.60Re0.40 tunnel junction (dotted curve) 
compared with a fitting curve (solid line). The energy gaps Δs = 0.5 meV and Δl = 2.5 

meV reasonably agree with the values extracted from point-contact experiments,  
see Fig. 1.6, the contribution of the smaller-gap band was dominant, the measurement 

temperature was 4.2 K. Adapted from Fig. 2 in Ref. [1.44] 
 
In Ref. [1.44], we presented our results for tunneling junctions based on 

Mo0.60Re0.40 polycrystalline films. The authors of Ref. [1.65] found that the 
native oxide of the Mo-Re alloy is grown up to thicknesses not more than 0.5 nm 
and are thinner that the oxides on Mo and Re surfaces. Therefore, in order to 
form a low-leakage tunnel junction on the Mo-Re film, they had to cover it 
with an Al overlayer, oxidized after that. Following the work [1.65], we have 
used artificial Al-oxide tunnel barriers and a 100 nm-thick lead counter-elect-
rode to form low-leakage tunnel junctions for measurements in the gap region 
not carefully analyzed in the previous tunneling experiments [1.65]. If we are 
dealing with a two-gap superconducting electrode, G(V) dependence for a tunnel 
junction should exhibit a two-peak structure. Fig. 1.7 demonstrates repre-
sentative conductance spectrum of the Pb/Al oxide/Al/Mo0.60Re0.40 junctions 
exhibiting reach fine structure with a prominent peak at 1.7 mV, a small local 
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maximum on a steep slope at 1.0 mV, and a distinct dip at 3.8 mV shown by 
related arrows. An analysis of the measured data based on a complex inner-
gap structure in transport characteristics of superconducting junctions with 
degraded interfaces [1.44] permitted to extract the values of the energy gaps 
Δs = 0.5 meV and Δl = 2.5 meV. The presence of the two superconducting 
gaps in the Mo-Re alloy probed by tunneling spectroscopy indicates that one 
of the most probable scenarios explaining the significant increase in Tc upon 
alloying Mo with Re may be interband interaction. 

 
 
1.3 Amorphous versus crystalline superconductors: two structural 

 extremes 

Solids are characterized by a rigid structure of molecules, ions, or atoms 
arranged in an orderly or non-orderly manner. The major difference between 
crystalline (discussed above) and amorphous (to be discussed below) com-
pounds lies just in the long-range structural order that can be always accurately 
defined by periodically translating unit cells. The lack of inherent periodicity 
with an appreciable degree of short-range and / or medium-range orders are 
distinct features of the amorphous phase. 

Three-dimensional (3D) crystal is a solid material in which the consti-
tuents are organized in a highly ordered microscopic structure forming a lattice 
extending in all directions. The crystalline materials retain their original shape 
and consistency, their mechanical strength, thermal conductivity, refractive 
index, and electrical conductivity differ in diverse directions. Fast cooling 
such substances may lead to an amorphous structure with irregular geometrical 
shapes. For example, quartz is a hard crystalline mineral composed of silicon 
and oxygen atoms in a strict order, while it can turn into amorphous glass when 
cooled rapidly. Other examples of amorphous materials largely used due to 
their huge benefits and unique isotropic properties are rubber and polymers. 
Amorphous state has usually an internal structure comprising interconnected 
structural blocks that can be similar to the basic structural units in the cor-
responding crystalline phase of the same compound. Therefore, the type of 
a solid depends primarily on the connectivity between its elementary building 
blocks, namely, crystals are characterized by a high degree of connectivity 
while the structural blocks in amorphous materials have lower connectivity. 
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As was indicated above, some elements that are poor superconductors in 
the crystalline phase (such as Ga and Bi) or do not exhibit superconductivity 
at all (as Be [1.66]) become superconductive in the amorphous state [1.67, 
1.68]. Early work [1.67] explained such finding by the lack of a densely 
packed structure in the crystalline phase and promotion of superconductivity 
by effectively compacting it. Other elements, such as Pb, have densely packed 
structure and are good superconductors already in the crystalline phase, but in 
this case, the disorder, if it is introduced, only reduces the critical temperature 
of the superconducting transition. Unfortunately, such explanation turned out 
to be insufficient and understanding the effect of structural disorder on super-
conductivity remains a long-standing problem waiting for its solution, see the 
reviews [1.4, 1.69, 1.70].  

Because of the lack of a theoretical framework able to describe, in a re-
ductionism way, the effect of structural disorder as well as limited experi-
mental characterization, amorphous materials are used quite rarely comparing 
to crystal counterparts. Nevertheless, there are some important fields as dis-
plays, solar cells, optical fibers, and others where non-crystalline samples 
found their niches. The most important amorphous thin-film application is a 
few nm thin SiO2 layer serving as an isolator above the conducting channel of 
a metal-oxide semiconductor field-effect transistor. Also, in some cases, the 
transition between amorphous and crystalline phases determines the device 
operation, for example, in phase-change memory setups. 

Main applications need thin solid films of a few nanometers to some tens 
of micrometers thickness deposited upon a substrate with the goal of forming 
amorphous phases. Necessary (but not sufficient) condition for their occurrence 
is that the deposition temperature must be below 30 % of the melting tem-
perature (for higher values of the deposition temperature, the surface diffusion 
of deposited atoms would allow for the formation of crystallites with a long-
range atomic order) [1.71]. Emergence of separate building blocks when the 
system is crossing a continuous phase transition in finite time can be explained 
by the formation of topological defects described by the Kibble-Zurek mecha-
nism valid in the limit of slow quenches. This approach predicts an universal 
power-law scaling of the density with the quench time in which the transition 
is crossed. While Kibble-Zurek scaling holds below a critical quench rate, for 
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faster quenches, the defect density and the freeze-out time become indepen-
dent of them, exhibiting universal power-law scaling with the final value of 
the control parameter. Such amorphous metallic layers played a decisive role 
in the discovery of superconductivity in amorphous metals. 

Historically, two different paradigms concerning the structure of amor-
phous solids were formulated in the 1950s, namely, the rigid band approxima-
tion and the random network approach which evolved into a modern structural 
theory of amorphous solids [1.72]. The modern interpretation considers struc-
turally similar building blocks connected in a network, where intermediate-
range order, that is, order on a scale larger than that of the individual building 
blocks, may persist up to a certain extent. However, even now some funda-
mental questions remain without answers. What is the extent of intermediate 
and long-range orders in the amorphous structure or what is the amount of 
randomness in the system? Second, how close is the relationship between the 
fundamental building blocks in amorphous materials and the corresponding 
crystals? Ref. [1.73] showed that it is possible to quantify the extent of struc-
tural similarity between amorphous and crystalline phases, thus shedding light 
on a problem debated for more than half a century. The authors of this work 
argued that there is no definite answer, valid for all amorphous materials but 
individual systems can show a degree of similarity toward certain crystalline 
polymorphs, which is not necessarily limited to short-range order. For some 
amorphous systems, the network building units might be very similar to those 
of a crystalline polymorph, while other systems may show distorted network 
building units but with more intermediate-range order.  

Due to the very short mean free path of electrons, amorphous materials 
provide a good model platform for analyzing the correlation between super-
conductivity and disorder [1.4]. The appearance of novel vortex phases in such 
samples was another subject of interest [1.74, 1.75]. Finally, the extraordinary 
phase homogeneity, little dependent on the crystal structure of the seed layer, 
has led to the fact that homogeneously disordered (amorphous) superconduc-
ting thin films are promising materials for use in superconducting micro- and 
nanoscale devices as superconducting detectors [1.76, 1.77] and vortex memo-
ry devices [1.78].  

Below we will take as an example our results for silicon- and germanium-
based amorphous superconducting films, α-MoGe and α-MoSi, with critical 
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temperatures Tc up to about 7.5 K, which have been previously used in high-
performance integrated quantum photonic circuits (see the reviews [1.79–
1.81] and references therein). Recent novel applications for α-MoGe and  
α-MoSi superconductors include quantum phase slip nanowire devices [1.82, 
1.83], superconducting memory [1.84], hybrid superconductor-ferromagnet 
spin valves [1.85], etc. High normal-state resistivity and low superfluid 
density of amorphous superconductors can be exploited for the design of 
SQUIDs with tunable characteristics [1.86] as well as may be useful for 
building protected qubits [1.87].  

Below we present our point-contact data for a MoSi thin layer stabilized 
in an amorphous phase and main characteristics of α-MoGe based Josephson 
junctions, which were fabricated and studied for the first time in Ref. [1.88]. 
Concerning the α-MoSi-Ag point contacts, we have followed the methodolo-
gy described above. Measuring differential conductance–versus–voltage cha-
racteristics and comparing them with theoretical expectations [1.61] we have 
found the energy gap value equal to 0.35 meV, see Fig. 1.8. 

 
 
 
 
 
 
 
 

Fig. 1.8 – Normalized differential conductance G(V)RN versus normalized voltage bias 
eV/Δ characteristic measured for a representative point-contact sample formed  

by a silver tip and an amorphous α-MoSi sample (dots) compared with a fitting curve 
(solid line). The energy gap Δ = 1.18 meV, the effective interface scattering parameter 

Z = 0.11 meV, the Dynes parameter Γ = 0.28 meV, the normal-state resistance  
RN = 17.2 Ohm 

 
Our next step was the fabrication of Josephson junctions based on amor-

phous superconducting films [1.88]. Up to now, the main technological 
approach in this field remains the whole-wafer Nb/Al/AlOx/Nb trilayer 
process [1.89], when the junctions are fabricated in situ and the tunnel barrier 
is formed by thermal oxidation of an Al overlayer deposited on the bottom Nb 
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layer. The barrier transparency in such trilayer is mainly controlled by the 
oxygen exposure, the product of oxygen pressure and oxidation time [1.90]. 
An advantage of the Nb/Al methodology is that it yields junctions with 
uniform properties over a large wafer area and good reproducibility from one 
fabrication batch to another. A standard deviation of the mean resistance 
values for a 5 mm × 5 mm test chip of 1 μm junctions is currently about 
1 % [1.91]. This means that superconducting circuits have already reached the 
density of very large-scale integration, previously achieved only by 
semiconductor technology. 

In spite of this progress, further improvement in the Josephson-junction 
tunneling quality remains an important task. In particular, this can be attained 
by reducing the Al overlayer thickness. At the same time, the drawback of the 
Nb/Al/AlOx/Nb technology is that thin Nb films are granular. Then an unoxi-
dized part of the Al overlayer tends to diffuse through the grain boundaries 
inside the Nb film [1.92] leading to degradation of the junction quality, 
especially in high-transparency junctions [1.93], and the need to use rather 
thick overlayers [1.94]. The solution to this problem can be the use of amor-
phous superconducting electrodes instead Nb ones. In the paper [1.88], related 
technique for obtaining such trilayer setups was described in detail. Obtained 
in such way sandwich-type Josephson tunnel junctions with α-MoGe electrodes 
demonstrated the potential of the technology for superconducting electronics.  

The Josephson multilayers were deposited in situ on oxidized Si sub-
strates at room temperature using DC magnetron sputtering from Mo75Ge25 
and Al targets while the tunnel barrier was formed by thermal oxidation of an 
Al overlayer exploiting the well-known ability of aluminum to form sponta-
neously a self-healing surface oxide. For some devices, a thin (1.3 nm) Al 
layer was deposited on top of the bottom oxidized Al overlayer prior to the 
deposition of a top MoGe layer. It is known that such procedure can conside-
rably improve the tunneling quality of the junctions, specifically, the charac-
teristic voltage. The superconducting transition temperature Tc of the α-MoGe 
films was in the range of 6.5 K to 7.0 K, the surface roughness of a typical 
160 nm thick α-MoGe layer used for the junction fabrication was 0.27 nm. 
For comparison, the surface roughness of a 120-nm thick Nb film, used as a 
base electrode in Nb/Al/AlOx/Nb junctions, was 0.66 nm [1.88]. Therefore, in 
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amorphous films, the surface uniformity was better than that in Nb 
counterparts, see Fig. 1.9. 

 

Fig. 1.9 – AFM images of a 120 nm thick Nb film (a) and 160 nm thick MoGe film (b) 
deposited onto oxidized Si substrates at room temperature. In both cases,  

the scanned area was 1.5 µm × 1.5 µm. Adapted from Fig. 1 in Ref. [1.88] 
 
Below we present main results obtained for one of two types of devices 

studied in Ref. [1.88], namely, MoGe(160)/Al/AlOx/(1.3)/Al(1.3)MoGe(80) 
where the numbers in parentheses are thicknesses of respective films in nm 
(that after Al/AlOx is the initial thickness of the Al overlayer before oxidation). 
The oxidation exposure dose was 31 mTor × min. Josephson devices with la-
teral dimensions of 10 µm × 10 µm and 5 µm × 5 µm were formed using opti-
cal lithography and reactive ion etching, They were characterized in a liquid 
He transport Dewar for measurements at 4.2 K, and in a Quantum Design 
MPMS cryostat at various temperatures. Typical current-voltage characteris-
tics (I–V curves) are shown in Fig. 1.10. For comparison, we demonstrate also 
typical I–V curve taken at 4.2 K for a Nb(120)/Al/AlOx/(8.4)/Al(1.3)Nb(70) 
junction that was fabricated with an oxidation dosage of 326 mTorr × min. Let 
us turn attention to the fact that in the Nb-based junctions, a considerably 
thicker Al overlayer was needed for obtaining appreciable tunneling quality. 

Notice also that, even at lower oxidation dosages, resistance of the MoGe-
based junctions is much higher than that in Nb-based junctions. For example, 
the resistance of the Nb/Al/AlOx/Al/Nb junction fabricated with ten times the 
oxidation dosage (its I–V characteristic is shown in Fig. 1.10 as an inset) has 
almost half the resistance of the MoGe junction (the main panel in Fig. 1.10).  

(a)  (b)  
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Fig. 1.10 – Main panel: Typical current-voltage characteristic  

of the MoGe(160)/Al/AlOx/(1.3)/Al(1.3)MoGe(80) junction. Inset: I–V curve  
for a Nb(120)/Al/AlOx/(8.4)/Al(1.3)Nb(70) junction. Critical temperature of the MoGe 

films was 7.0 K, the temperature of the transport measurements was 4.2 K.  
Adapted from Fig. 3 in Ref. [1.88] 

The ‘knee’ structure seen slightly above the sum of the two energy gaps 
indicates the presence of an underoxidized aluminum interlayer between Nb 
and AlOx in the heterostructure and is the result of the proximity effect [1.95, 
1.96]. It was obtained that the relative standard deviation of the 4.2 K resis-
tance at 3 mV for seven Nb-based junctions on the same substrate was 0.008, 
which is slightly larger than that for the MoGe junctions. For the same thin Al 
overlayer in Nb junctions as in MoGe junctions, the spread of the junction 
resistances would be considerably larger. This is an indirect evidence that the 
uniformity of the tunnel barrier in the MoGe junctions surpasses that in Nb-
based junctions. The latter statement is supported by recent progress in appre-
hending the process of the Al surface oxidation that was previously poorly 
understood [1.97–1.100]. Nguyen et al. [1.97] studied the mechanism of alu-
minum oxide formation using atomic resolution imaging in an environmental 
transmission electron microscope. The authors found that the oxidation occurs 
via island growth and proceeds atomic layer-by-layer into the aluminum. After 
sufficient time, a continuous ~1.5 nm thick semi-crystalline layer of the oxide 
covers the surface up to the saturation thickness, depending on the oxygen 
pressure (higher pressures result in faster initial oxidation rates and higher 
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critical oxide thicknesses) [1.99]. The aluminum oxide phase has been identi-
fied in many previous studies as spinel (γ) Al2O3 oxide which is known to 
exhibit large structural differences due to variations in stoichiometry, tempera-
ture, pressure, and film thickness, see Ref. [1.97] and references therein. The 
fully thickened film is amorphous and shows no long-range crystallinity [1.97]. 
These experimental findings were confirmed by fully ab-initio simula-
tions [1.98] aimed at understanding the thermodynamic driving force behind 
the initial choice to grow in an amorphous phase or a crystalline phase (either 
the corundum (α) or spinel (γ) structures) for the aluminum oxide surface layer 
growing on a crystalline Al substrate.  

For the Josephson multilayered junctions with higher barrier transparency 
comparing to that shown in Fig. 1.10, the temperature effect on the current-
voltage characteristics was studied in the range of temperatures from 2.6 K to 
the critical value Tc about 7.0 K [1.88]. A set of current-voltage characteristics 
for a representative device, at 2.6, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 6.5 K, is 
shown in Fig. 1.11. In these measurements, magnetic fields of 120–160 G 
were applied to suppress the Josephson current. The product of the junction 
resistance in the normal state RN = 0.6 Ohm, and the subgap current I*(V*) at 
the voltage bias V*= ∆/e, where ∆ is an apparent energy gap, is shown in 
Fig. 1.12 as a function of temperature for three nominally identical junctions 
(scattered plots). 
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Fig. 1.11 – Main panel: A set of current-voltage characteristics for a 

MoGe(160)/Al/AlOx/(1.3)/Al(1.3)MoGe(80) junction measured at 2.6, 3.0, 4.0, 4.5, 5.0, 
5.5, 6.0, and 6.5 K. Magnetic field of 120–160 G was applied to suppress the Josephson 
current. The arrow shows a step associated with the flux flow. Inset: zoomed-in portion 
of the I-V curve for 2.6 K, marked by a red rectangle. Adapted from Fig. 4 in Ref. [1.88] 



34 

The subgap current vs temperature dependence presents further confir-
mation of high quality tunnel barriers in the Josephson junctions discussed. 
Fig. 1.11 exhibits a rapid decrease of the subgap current as the temperature 
goes down. For the curves measured at 6.0 and 6.5 K, the applied magnetic 
field was 160 G. However, even in such a field, the DC component of the AC 
Josephson current was not completely suppressed at voltage biases above that 
indicated by the vertical arrow. The Josephson current manifests itself as a 
smeared step, whose voltage position depends on the field. This step should 
not be confused with the step related to the subharmonic energy gap structure 
that is usually associated with the multiple Andreev reflections. Fig. 1.12 
demonstrates the temperature dependence of the product I*RN as explained 
above. Current-voltage curves were calculated using the standard expression 
for the tunnel current between two identical superconductors: [1.101, 1.102]: 

N s s
1( , ) ( , ) ( , )[ ( , ) ( , )]I V T R d N eV T N T f eV T f T
e

ε ε ε ε ε
∞

−∞
= − − −∫ , (1.5) 

where { }2 2
s ( , ) Re / ( )N T Tε ε ε= − ∆  (1.4) is the normalized density of states in 

the superconducting electrode (the energy ε is measured from the Fermi level), 
( , )f Tε  is the Fermi distribution function, and ∆(T) was assumed to follow the 

conventional BCS dependence. Zero-temperature energy gap ∆0 ≡ ∆(0) = 
1.14 meV was found from the same BCS curve using the values ∆(4.2 K) = 
1.03 meV and Tc = 7 K. Note that the obtained ratio 2∆0/kBTc = 3.77 is in 
agreement with that found by Tashiro et al. [1.103]. It is slightly larger than 
the BCS weak-coupling limit 2∆0/kBTc = 3.52 indicating moderate electron-
phonon coupling in the amorphous α-MoGe superconductor. 

In Fig. 1.11, one can see also a backward trend in the current-voltage cha-
racteristiucs at the gap-sum voltage, especially pronounced at lower tempe-
ratures. For example, the inset in Fig. 1.11 shows on a magnified scale a seg-
ment of the I–V curve near the voltage bias of 2∆/e outlined by the red dashed 
rectangle in the main panel for the curve measured at 2.57 K. A similar feature 
has been observed previously in a number of experiments involving tunnel 
junctions made of different superconducting materials and was associated with 
the gap suppression and formation of a nonequilibrium inhomogeneous state 
in superconducting films due to self-injection of quasiparticles [1.104]. 
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Fig. 1.12 – Main panel: Temperature dependence of the product I*RN, where the current 

I* is measured at a voltage bias of ∆(T)/e (∆(T) is an apparent energy gap) for three 
nominally identical MoGe(160)/Al/AlOx/(1.3)/Al(1.3)MoGe(80) junctions (scattered 

plots). The solid line shows the theoretical dependence for an ideal tunnel junction with 
the same resistance as that of the measured junctions and ∆(0) = 1.14 meV for both 

electrodes. Inset: a set of current-voltage characteristics calculated for an ideal tunnel 
junction at T/Tc = 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 (curves from left to 
right, respectively). Orange squares denote voltages corresponding to 2∆(T). Magenta 

diamonds indicate current levels I* corresponding to ∆(T)/e used for calculating 
the curve theoretically expected in the main panel. Adapted from Fig. 5 in Ref. 1.88 

 
Since the effect of the gap suppression due to the excess quasiparticles, 

Nexc, created by the injection rate, I0, may be important in some applications 
[1.105, 1.106], we have to analyze this feature in more detail. In the simplest 
case, Nexc≡ N(I0) – NT = I0τε, where NT is the thermal-equilibrium number 
density of quasiparticle excitations, the injection rate I0 is the number of quasi-
particles injected into a unit volume per second, and τε is the quasiparticle 
relaxation time [1.107]. Let us now compare the impact of the same I0 on the 
energy gap suppression δ∆ in Nb and amorphous MoGe electrodes. In a 
nonequilibrium state, when the distribution function of excess quasielectron 
excitations nexc(ε) ≠ 0, the gap ∆ can differ from its thermodynamic value ∆0. 
For the “narrow” distribution function nexc(ε) in the S film (∆ ≤ ε ≤ ∆ + δ∆;  
δ∆ << ∆), we get the following relation for a relative gap suppression 
η∆(n)≡[∆(0)–∆(n)]/∆(0) in a conventional BCS superconductor [1.108]: 
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where ωD is the Debye energy. The excess quasiparticle concentration n  
is proportional to the ratio of Nexc/N(0) where N(0) is the single-spin density 
of states at the Fermi level [1.107].  

Therefore, we can compare the effect of the same injection intensity I0 in 
α-MoGe and Nb as follows:  

)0(
)0(

MoGNb

NMoGe

Nb

MoGe

e

b

N
N

ε

ε

τ
τ

η
η

≅
∆

∆ . (1.7) 

The quasiparticle relaxation times MoGe
ετ  and Nb

ετ  depend on several factors 
such as the energy of excess quasiparticles, temperature, device size, environ-
ment, etc., hence it is difficult to precisely estimate this ratio. However, the 
data [1.109] indicate that the relaxation processes in MoGe are as fast as in 
Nb. Specifically, the recombination time is τr = 3.5⋅10−11 s for MoGe [1.109], 
whereas for Nb at T/Tc ≈ 0.5 and for the quasiparticle energy ε = 2∆, τr is about 
9⋅10−11 s [1.110]. In realistic experimental situations, in addition to the recom-
bination, other processes, such as electron-phonon interactions, are involved 
in the quasiparticle relaxation. Liang and Kunchur [1.109] measured quasi-
particle relaxation time τε in MoGe films. At T/Tc ≈ 0.6 (which corresponds to 
our experimental situation), one can infer MoGe

ετ ≈  7⋅10−10 s from the data [1.109] 
while for Nb the energy relaxation time Nb

ετ ≈  3⋅10−11 s [1.111]. Note that 
according to [1.104], the quasiparticle energy relaxation and gap relaxation 
times coincide.  

Using the latter data and the densities of states at ε = 0, NMoGe(0) = 
6.4⋅1021 eV-1cm-3 [1.112] and NNb′(0) = 9⋅1022 eV-1cm-3 [1.113], we obtain 
from Eq. (1.7) that the ratio NbMoGe / ∆∆ ηη  > 300 for the same injection rate I0. 
This estimate indicates that a nonequilibrium quasiparticle population is much 
easier to realize in MoGe films than in Nb films. The data in Fig. 1.11 are 
consistent with the conclusion. 

Fig. 1.13 exhibits experimental dependencies of the critical current Ic 
versus magnetic field H applied parallel to the layers of 5 µm × 5 µm 
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Josephson junctions with higher critical current density jc = 1.25 kA/cm2. The 
Ic(H) characteristic of a representative device, recorded at 4.2 K, is close to the 
theoretical expectation described by the relation Ic|sin(πΦ/Φ0)/πΦ/Φ0| (solid 
red line), where Φ is the magnetic flux penetrating the junction, and 
Φ0=2.07⋅10-7 G⋅cm2 is the flux quantum. A small deviation of the experimental 
Ic(H) curve from theoretical one (in particular, a small asymmetry) is likely 
due to self-field effects and / or trapped flux [1.114, 1.115]. 

At the beginning of this subsection, we have mentioned (‘strange’ from 
the first insight) behavior of superconducting characteristics in amorphous 
metal alloys, also known as metallic glasses. Good superconductors change 
little by introducing disorder into them while those with relatively small Tc’s 
can sharply raise their superconducting transition temperature. It is important 
that at low temperatures, many disordered materials have properties very si-
milar to each other, including specific heat and thermal conductivity. Additio-
nally, these properties differ significantly from those of related ordered crys-
tals. Both features can be observed analyzing relaxation processes in glass-
forming materials that usually occur as a two-stage process. First, there is a 
fast or ‘β-relaxation’ process, having a weakly temperature-dependent relaxa-
tion time (usually on the order of picoseconds), followed by the primary or  
‘α-relaxation’ process with a relaxation time ranging from picoseconds to even 
minutes [1.116]. 
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Fig. 1.13 – Ic vs H dependence of a 5 µm × 5 µm 

MoGe(160)/Al/AlOx/(1.3)/Al(1.3)MoGe(80) junctions at 4.2 K (black line + symbol 
plot). Red solid line is a theoretical dependence calculated using the period  
of the diffraction pattern δH = 11.6 G. Adapted from Fig. 6 in Ref. [1.88] 
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Furthermore, at a certain frequency range, amorphous materials exhibit 
excess of soft vibrational modes comparing to crystals, known as a ‘boson 
peak’ [1.117, 1.118], which shows up in the vibrational density of states F(ω) 
upon normalizing it by the Debye law ωd-1: F(ω)/ωd-1 (here d is the spatial 
dimensionality and ω is the angular frequency). Notice that F(ω)/ωd-1 = const 
in the Debye’s theory for crystals that successfully explained thermal behavior 
of ordered solids but cannot be straightforwardly applied to amorphous ones 
due to structural disorder and the absence of translational order, making it 
extremely challenging task.  

The authors of Ref. [1.118] used sophisticated molecular dynamics com-
puter simulations for revealing microscopic origins of the boson peak through 
numerical investigations of the dynamic structure factor of two-dimensional 
model glasses over a wide frequency–wavenumber range. They found that 
quasi-localized vibrations of string-like dynamical defects inside the material 
can move together, thus being important drivers of the anomalous observa-
tions in glassy systems: the boson peak, fast β-relaxation and slow structural 
relaxation. This conclusion has many important implications for both basic 
science and practical applications.  

Typically, superconductivity in amorphous materials is strongly coupled, 
with the electron-phonon coupling parameter λ > 1 and the superconducting 
gap much larger than the BCS prediction, Presence of the boson peak means 
the need to transit from the oversimplified Bardeen-Cooper-Schrieffer model 
to the Eliashberg theory of strong-coupling phonon-mediated superconducti-
vity [1.58, 1.119, 1.120]. This theory considers phonons as ballistic excitations 
while the largest part of the vibrational density of states for an amorphous 
material is formed by phonons, which propagate diffusively due to intense 
scattering promoted by disorder. Their Green’s function 

2 2
1( , )

( ) ( )
G k

k i kλ
λ λ

ω
ω ω

=
− Ω + Γ

, (1.8) 

takes into account propagating and diffusive damping (due to disorder-
induced scattering) terms given by 𝛺𝛺𝜆𝜆

2 = 𝜐𝜐𝜆𝜆
2𝑘𝑘2 and 𝛤𝛤𝜆𝜆(𝑘𝑘) = 𝐷𝐷𝜆𝜆𝑘𝑘2. Here 𝜐𝜐𝜆𝜆 and 

𝐷𝐷𝜆𝜆 are the (dressed) speed of phonon propagation and the diffusion constant 
of the λ phonon branch, respectively, the subscript λ refers to either 
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longitudinal λ = L or transverse λ = T displacement fields, the diffusive form 
𝐷𝐷𝜆𝜆 of the damping follows from related simulations performed over a broad 
range of k, see the references in Ref. [1.121]. Respectively, the Eliashberg 
electron-phonon interaction function equals to  

22
,( , , ) ( ) ( , )k kF k k N g B k kα ω µ ω′

′ ′≡ − 

   

 (1.9) 

with the electronic density of states N(μ) at the chemical potential μ, 
the electron-boson matrix element ,k kg ′

  , and the spectral function 

1( , ) Im ( , )B k G k iλ λω ω δ
π

= − +  (1.10) 

Using Eq. (1.8) we obtain [1.121] 

{ }22 2 2 2

( )( , )
( ) ( )

kB k
k k

ωω
π ω ω

Γ
=

 − Ω + Γ 
 (1.11) 

Next, the Fermi-surface-averaged spectral function 

2 2
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1( ) ( , , ) ( ) ( )
( ) k k

k k
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α ω α ω δ ε µ δ ε µ
µ ′

′
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 

 

 (1.12) 

can be used for calculations of basic superconducting parameters as it was 
shown for crystalline samples in Ref. [1.58].  

Using the Lorenzian form (1.11) to model the phonon spectral density, the 
authors of Ref. [1.121] went to some very important conclusions. First, they 
obtained (known from experiments) linear in frequency behavior of the 
Eliashberg function α2F(ω) in the low-ω limit. Second, they found a non-
monotonic dependence of the electron-phonon coupling parameter λ upon the 
disorder characteristic D (Fig. 1.14) with a maximum as a function of disorder, 
which monotonically grows upon increasing the speed of sound. Such tenden-
cy may be ascribed to two competing factors. On the one hand, the Lorentzian 
vibrational peak becomes bigger, which makes more phonon states accessible 
for pairing at low ω. On the other hand, upon increasing D further, the 
Lorentzian becomes broader and eventually shallower due to the term ∼D2 in 
the denominator of the Lorentzian (1.11). These two opposite tendencies cause 
the presence of a peak in the dependence of λ on the diffusivity D., the position 
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of which shifts towards higher diffusion coefficients as the transverse speed 
of sound in a given material increases (a dashed line in Fig. 1.14) [1.121]. 
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Fig. 1.14 – Schematic illustration of the electron-phonon coupling constant λ  
on the diffusivity D of transverse vibrational excitations for various values of the 

transverse speed of sound. The dashed line demonstrates an increase of the maximum 
position towards higher diffusion coefficients with increasing the speed of sound.  

The units for both axes are arbitrary. Adapted from Fig. 2 in Ref. [1.121] 
 

The presence of a maximum in the λ-vs-D dependence shown in Fig. 1.14 
means that the disorder effect on the main superconducting characteristics of 
a particular metal is controlled by its position on the λ-vs-D curve in the 
original crystalline state. If the initial superconductor has a relatively small 
value λ, then the disordering could enhance the electron-phonon coupling 
strength and we may observe the growth of Tc, as it happens, for example, in 
aluminum [1.122]. If, however, we are dealing with a superconductor with a 
sufficiently large λ, as in lead, then converting it to an amorphous state or 
adding impurities, most likely, will not lead to any noticeable effect or even 
cause slight weakening of the electron-phonon interaction. 

These conclusions are well supported by comparing related experimental 
data for two model materials, for which the structural disorder can be varied 
continuously from the pure crystalline material limit (zero disorder) to the 
amorphous state (strong disorder) whether by means of alloying or by creating 
amorphous samples. Reconstructed Eliashberg functions feature two distinct 
peaks corresponding to transverse T (low frequency) and longitudinal L (high 
frequency) vibrational excitations. It is evident that, upon increasing the 
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degree of disorder, both peaks become much broader due to the increase of the 
phonons diffusivities DT and DL. This impact is more pronounced in the low-
frequency region in agreement with the boson peak effect. Fig. 1.15 shows 
that in spite of the greater changes in the Eliashberg functions of Pb and related 
alloys in the low-frequency region, the disorder effect on Tc is much stronger 
in Al than in Pb, since, firstly, the crystalline aluminum has a significantly 
lower electron-phonon interaction strength, and secondly, due to the stronger 
broadening effect for longitudinal phonons. 

The latter statement was also supported by experiments on nanostructured 
samples of Sn, a weekly coupled superconductor [1.26]. Relating their results 
to the bulk Sn phonon density of states, the authors [1.26] pointed out on a 
slightly increased number of low-energy phonon modes and a strong decrease 
in the number of high-energy phonon modes. It is important to note principal 
difference between Sn and Nb3Sn thin films [1.122]. In Nb3Sn, a strong 
coupling superconductor, with decreasing film thickness, a slight decrease in 
Tc was observed that was mainly caused by an electron confinement factor 
rather than phonon softening. Again, as in the case of Pb and Al discussed 
above, this difference arises due to lower electron-phonon interaction strength 
in the initial material. 
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Fig. 1.15 – Eliashberg electron-phonon interaction functions  
α2F(ω) for Pb and PbBi alloy [1.123, 1.124] (a) and Al [100]  

(b) reconstructed from tunneling experiments [1.123, 1.124] and [1.125], respectively.  
Adapted from Figs. 3 and 5 in Ref. [1.121] 
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1.4 Superconducting quasicrystals and high-entropy alloys: 
 intermediate compounds between crystalline and amorphous 
solids 

We have discussed above two extreme states – crystalline and amorphous 
superconductors. According to the conventional crystallography, a crystal as 
a periodic arrangement of atoms with translational periodicity, leading to an 
infinitely extended crystal structure by aligning building blocks called unit 
cells [1.126]. The discovery of quasicrystals, stable solid-state materials without 
translational symmetry but having a high degree of order in their atomic 
arrangement (as manifested in the occurrence of sharp diffraction spots) led to 
a paradigm shift in materials science. Another feature that significantly distin-
guishes them from traditional crystals is the presence of a non-crystallographic 
rotational symmetry as fivefold symmetry in icosahedral quasicrystals. It was 
found that these specifically ordered materials exhibit anomalous electronic 
properties [1.127, 1.128], quantum criticality [1.129], etc. Superconductivity 
that emerged below Tc = 50 mK was observed for the first time in 2018 in an 
Al-Zn-Mg alloy [1.126]. In fact, it was the first quasicrystal exhibiting electro-
nic long-range order. The authors revealed no difference between their samples 
and conventional weak-coupling superconductors. Nevertheless, during the 
last years the nature of superconductivity in such exotic materials has become 
the subject of intense theoretical debate, see Ref. [1.130] and references 
therein. In particular, the authors of Ref. [1.131] drew attention to the diffe-
rence between the BCS theory and experiment [1.126] concerning the jump in 
the specific heat at the superconducting transition and explained it considering 
the attractive Hubbard model on the Penrose tiling as a simple theoretical 
model. However, from a theoretical point of view, there is no reason to believe 
that the mechanism of superconductivity in quasicrystals is fundamentally 
different from that in the BCS theory [1.130]. Undoubtedly, a further more 
detailed study of superconductivity in quasicrystals is needed. 

Let us move on to more studied substances that also occupy an interme-
diate position between crystalline and amorphous superconductors, namely, to 
high-entropy alloys (HEA), a novel class of single-phase crystals with random 
solid solutions of five or more elements of a nearly equal composition [1.132]. 
These materials received a great amount of attention in recent years because 
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of their multi-elemental composition providing not only an enormous number 
of combinations for materials discovery but also a unique microstructure for 
property optimization [1.132, 1.133]. In particular, HEAs are known to exhibit 
intriguing electronic properties and superior mechanical properties such as a 
combination of high yield strength and ductility, high strength at high tem-
peratures, strong resistance to corrosion and oxidation, outstanding thermal 
stability and so on, which are primarily derived from the high atomic disorder 
and near-equiatomic (5–35 at. %) mixing of different elements. The concept 
of this type of materials was originally proposed for simple crystal structures 
such as face-centered-cubic (fcc), body-centered-cubic (bcc), and hexagonal-
closed packing (hcp) structures, all of which possess only one crystallographic 
site. Now this idea was implemented in many multi-site alloys beyond the 
structures mentioned above. Up to now there was not proposed a strict 
definition of HEAs. One of the definitions of HEA is that more than five 
elements with an atomic fraction of each element between 5 % and 35 % 
randomly occupy one crystallographic site [1.134]. The other definition uses 
the value of mixing entropy ΔSmix, which is expressed as follows:  

mix
1

ln
n

i i
i

S R c c
=

∆ = − ∑ , (1.13) 

where n is the number of components, ci is the atomic fraction and R is 
the gas constant. According to this equation, we classify low-entropy alloys as 
having an R value less than 0.69, medium-entropy alloys as having an R value 
between 0.69 and 1.60, and HEAs has having an R value of 1.60 or 
larger [1.135]. 

One of the attractive properties of HEAs is superconductivity [1.136, 
1.137, 1.138]. In 2014, Koželj et al. reported the synthesis of the first HEA 
superconductor Ta0.34Nb0.33Hf0.8Zr0.14Ti0.11 with Tc = 7.3 K [1.37]. It was a 
type II superconductivity with the upper critical field Hc2(0) = 82 kOe. The 
measured physical properties were consistent with a conventional phonon-
mediated superconductivity in the weak electron–phonon coupling limit. One 
of the salient features of this superconductor is that it exhibits extremely stable 
superconductivity under pressures up to 190 GPa. Later on, superconductivity 
was also observed in other HEAs, in particular, in CsCl-type Sc-Zr-Nb-Rh-Pd 
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and Sc-Zr-Nb-Ta-Rh-Pd alloys [1.139] and TrZr2-type (Fe,Co,Ni,Rh,Ir)Zr2 
[1.140, 1.141]. Most interestingly, the superconducting (ScZrNb)0.65[RhPd]0.35 
compound has Tc ≈ 9.7 K and Hc2 ≈ 100.7 kOe, comparable to those charac-
teristics of NbTi alloys [1.142]. From the basic viewpoint, HEA superconduc-
tors composed of transition metals can be regarded as an intermediate state 
between crystalline and amorphous materials, that is why their study is 
expected to shed light on the relationship between main parameters and the 
structural properties of superconductors. 

Such an analysis based on experiments carried out on the Ta-Nb-Hf-Zr-
Ti system, the most explored combination, was made by the authors of 
Ref. [1.137]. In particular, a large amount of data already available was con-
sidered from the perspective of an empirical Matthias rule [1.143] for Tc 
plotted as a function of the valence electron count per atom (VEC), see also 
the review [1.144]. This rule states that the superconducting critical tempera-
ture of transition-metal crystalline superconductors vs VEC dependence has 
the form of broad peak structures at specified VEC values. Indeed, in the 
compound (TaNb)1-x(HfZrTi)x (0.2 ≤ x ≤ 0.84) where, depending on x, Tc 
ranges from 4.5 K to 8.0 K the maximum Tc is reached at the VEC value about 
4.7 following the Matthias rule for crystalline transition-metal superconduc-
tors [1.145]. The curve of the VEC dependence of Tc for the HEAs lies bet-
ween those of crystalline 4d metal solid solutions and amorphous 4d metals.  

One of the high-impact results is the superconducting properties under 
high pressures. The (TaNb)0.67(HfZrTi)0.33 HEA superconductor showed a 
robust zero-resistance state up to 190.6 GPa [1.146]. This observation makes 
the HEAs promising candidates for superconducting materials working under 
extreme conditions. Another important conclusion to be noticed is the thermal 
annealing effect [1.147]. Long-term annealing induces short-range clustering 
of atoms, modifying the HEA microstructure. However, the superconducting 
properties are rather insensitive to such changes. There were reported first 
successful fabrications of (TaNb)1-x(HfZrTi)x thin films using a magnetron 
sputtering method [1.148]. The highest Tc = 6.8 K was observed at x = 0.43 
with VEC = 4.57. It was also found that the high-entropy state tends to 
stabilize the crystalline structure in spite of a rather large mismatch of atomic 
radii among constituent elements and therefore the high-entropy impact on 
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superconducting characteristics is correlated more to the structural properties 
than the electronic ones. 

Let us now compare our results for Mo-Re crystalline alloys presented 
above with HEA compounds which are including molybdenum and rhenium 
as constituent elements. Ref. [1.149] reported related data for several hcp 
HEA superconductors based on a Mo-Re-Ru hcp alloy with the critical tempe-
rature Tc of 9.1 K. The highest Tc of 4.7 K was observed for a 
Mo0.225Re0.225Ru0.225Rh0.225Ti0.1 compound. We can see that the supercon-
ducting transition temperature does not reach values typical for binary Mo-Re 
crystalline samples. This again indicates that the main benefit of the HEA 
samples is not their superconducting parameters but other superior properties 
arising due to high mixing entropy.  
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Fig. 1.16 – Superconducting transition temperatures Tc vs valence electron count per 
atom (VEC) dependence for bcc (left) and hcp and hcp-related (right) HEA supercon-
ductors compared with related dependences for crystalline 4d metal solid solutions and 

amorphous 4d metal superconductors. Adapted from Figs. 3 and 5 in Ref. [1.137] 
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The elemental choice for superconducting HEA compounds is now li-
mited by Hf, Zr, Ti, Ta, Nb, Mo, V, Re, Ru and Rh with a VEC between 4 and 
5 for bcc materials and neat 7 for hcp and hcp-related alloys. Due to it, the 
total number of HEA superconductors is rather small. Such state of affairs 
opens up a wide field of machine learning activities [1.150, 1.151]. In this 
regard, the most important, although perhaps not feasible in practice, task is to 
find a high-Tc HEA. As was argued by the authors of the overview [1.137], 
interest in HEA superconductors will grow due to the high degree-of-freedom 
of the HEA design. For example, it can relate HEA superconductors 
containing magnetic element(s) [1.137], eutectic [1.152], or gum-like [1.153] 
HEA superconducting compounds. In the first case, we may anticipate an 
exotic superconducting state originating from the large mixing entropy 
[1.137]. The change of the internal arrangement in eutectic HEAs could lead 
to the enhancement not only Tc but the critical current density as well since the 
microstructure of such material can be regarded as built-in multifilamentary 
one [1.137]. Gum metals. i. e., metals which can be bent as gum [1.154] (for 
example, as-cast Al0.05Nb0.24Ti0.4V0.05Zr0.26 [1.153]) are highly advantageous 
for making next-generation superconducting wires because their good super-
conducting properties are preserved even after cold rolling [1.137]. Last, the 
creation of new superconducting devices based on HEAs remains the most 
important task of this research line. 

 
 
1.5 Conclusions 

The interplay between disorder and superconductivity is a fascinating fun-
damental phenomenon in quantum physics. The famous Anderson’s theorem 
states that conventional superconductors are insensitive to dilute nonmagnetic 
impurities. Even more, in the strong disorder regime far beyond the scope of 
the Anderson’s theorem application, destruction of superconductivity and even 
superconductor–insulator transitions may take place [1.4]. That is why disor-
der-enhanced superconductivity is usually considered anomalous. However, our 
review shows that this effect is not so rare and manifests itself in a wide range 
of superconductors with different degrees of structural ordering. Notice that 
superconducting properties can be controlled not only by the overall density 
of impurities and / or defects but also by their spatial correlations [1.155]. 
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To demonstrate the ubiquity of this phenomenon, we considered two 
limiting cases – a simplest binary alloy with a clear crystal structure (on the 
example of an alloy of molybdenum with rhenium) and an amorphous super-
conductor with a short-range ordering (on the example of a-MoSi and a-MoGe 
films). In the first case, a sharp increase in the critical temperature of the 
normal-to-superconducting transition was caused by modification of the elect-
ronic structure due to alloying, while in the second case, the main factor was 
the diffusive character of the phonon propagation promoted by increased 
number of scattering events. The best way to understand the interplay between 
the two sources of superconductivity enhancement would be careful and well-
controlled study of an intermediate case, superconducting high-entropy alloys 
characterized by a multi-component alloy in which five or more elements are 
randomly occupying a crystallographic site. The materials research on the 
latter materials has just started recently, and we believe that it will bring new 
unexpected results. Solving the dilemma of crystalline and amorphous super-
conductors will give researchers a better understanding of chemical design 
principles for optimizing the key critical parameters in order to create novel 
superconductor-based devices. 
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2. IRON-CONTAINING SUPERCONDUCTORS  
FROM THE VIEWPOINT OF CHEMISTS: 

THERMODYNAMIC STABILITY AND SUBSTITUTION 
LIMITS IN La1–xLnxFeAsO1−y HIGH-TEMPERATURE 

SUPERCONDUCTORS (Ln = Ce–Er and Y) 
 

E. Get’man1, Yu. Oleksii1,2, O. Mariichak1, L. Ardanova3, S. Radio1 

Abstract 

Within the framework of V. S. Urusov’s crystal energy approach, we 
calculated mixing energies (interaction parameters), critical decomposition 
(stability) temperatures and built the domes of the decomposition of solid 
solutions of the following systems: La1−xCexFeAsO0.65, La1−xPrxFeAsO0.65, 
La1−xNdxFeAsO0.65, La1−xPmxFeAsO0.65, La1−xSmxFeAsO0.65, La1−xEuxFeAsO0.65, 
La1−xGdxFeAsO0.65, La1−xTbxFeAsO0.65, La1−xDyxFeAsO0.65, La1−xHoxFeAsO0.80, 
La1−xErxFeAsO0.75, La1−xYxFeAsO0.80, La1−xYxFeAsO0.60, La1−xSmxFeAsO0.85, 
whose components are isostructural with ZrCuSiAs. It is shown that the mag-
nitude of the mixing energy is determined mainly by the difference in sizes of 
the substituting structural units. The presented diagram makes it possible to 
predict the regions of thermodynamic stability of solid solutions, as well as the 
substitution limits (x) depending on the decomposition temperature (Td) or the 
decomposition temperature according to the given substitution limits for 
limited series of solid solutions in all the above systems. Within the error of 
the method, our results do not contradict the available experimental data for 
La1−xYxFeAsO0.6 and La1–xSmxFeAsO0.85 systems and can be useful in choosing 
the ratio of components in «mixed» matrices, as well as the amount of an ac-
tivator in high-temperature superconductors and effective magnetic materials. 
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2.1 Introduction: Iron-based layered superconductors 

Iron-based layered superconductors (LnFePnO1–y, Ln – lanthanides, Pn – 
P or As) are Fe–containing compounds with a ZrCuSiAs-type of structure 
(tetragonal, P4/nmm) whose superconducting properties were discovered in 
2006 for LaOFeP [2.1], and in 2008 for fluorine-doped LaFeAsO [2.2]. 

The structure, depicted in Fig. 2.1, consists of alternating Fe–As and La–O 
layers. Fe and O atoms sit at the center of slightly distorted As and La 
tetrahedra; the As tetrahedra are squeezed in the z direction. Since the radius 
of As atoms is much larger than the radius of a Fe atom, the Fe–As blocks are 
not atomically planar, in contrast to the Cu–O planes of cuprates. Fe atoms 
form a planar square lattice, with As atoms located above and below this plane, 
forming tetrahedra with Fe atoms in the center; the Fe–As distance is 2.41 Å, 
and the As–Fe–As angles are either 107.50 or 113.50. Fe atoms also bond to 
other Fe atoms in the plane, which are arranged on a square lattice at a distance 
of 2.85 Å [2.2–2.3]. Crystallochemical properties of LnFeAsO compounds are 
determined by the configuration of the outer electron shells: Fe(4s4p3d), 
As(4s4p), Ln(6s5d4f), O(2s2p). The formal valences of ions are as follows: 
La3+, O2–, Fe2+, and As3–. It is thought that these two layers are, respectively, 
positively and negatively charged, and that the La–O chemical bond in the  
La–O layer is ionic whereas the Fe–As has a predominantly covalent nature. 
Thus, the chemical formula may be expressed as (La3+O2–)+(Fe2+As3–)–. 
The conductive carriers, the concentration of which can be increased by 
substitution of the O2– ion with a F– ion, are confined two dimensionally in the 
(FeAs)– layers (Fig. 2.1) [2.4]. 

 
Fig. 2.1 – Crystal structure of LaFeAsO1–xFx. Adapted from Ref. [2.4] 
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Crystal lattice parameters and superconducting transition temperatures for 
some compounds LnFeAsO are given in Table 2.1. 

Table 2.1. Maximal temperatures of superconducting transitions obtained 
by doping of LnFeAsO compounds. 

LnFeAsO1–yFy or LnFeAsOy Tc, K a, Å c, Å 
LaFeAsO0.95F0.05 [2.2] 
LaFeAsO [2.2] 

26 4.0320 
4.0355 

8.7263 
8.7393 

LaFeAsO0.89F0.11 [2.4] 43 (at 4 GPa) 
9 (at 30 GPa) 

– – 

LaFeAsO0.8F0.2 [2.5] 
LaFeAsO [2.5] 

27.5±0.2 4.030 
4.039 

8.716 
8.742 

LaFeAsO0.85 [2.6] 
LaFeAsO [2.6] 

31.2 4.022 
4.033 

8.707 
8.739 

CeFeAsO0.84F0.16 [2.7] 
CeFeAsO [2.7] 

41 3.989 
3.996 

8.631 
8.648 

CeFeAsO0.88F0.12 [2.8] 47 (at 1.8 GPa) 
4.5 (at 19 GPa) 
<1.1 (at 26.5 GPa) 

– – 

CeFeAsO0.85 [2.6] 
CeFeAsO [2.6] 

46.5 3.979 
3.998 

8.605 
8.652 

PrFeAsO0.89F0.11 [2.9] 
PrFeAsO [2.9] 

52 3.967 
3.9853 (y = 0) 

8.561 
8.595 

PrFeAsO0.85 [2.6] 
PrFeAsO [2.6] 

51.3 3.968 
3.985 

8.566 
8.600 

NdFeAsO0.89F0.11 [2.10] 52 – – 
NdFeAsO0.82F0.18 [2.11] 50 – – 
NdFeAsO0.85 [2.6] 
NdFeAsO [2.6] 

53.5 3.943 
3.965 

8.521 
8.572 

NdFeAsO0.7F0.3 [2.12] 46 – – 
SmFeAsO0.90F0.10 [2.13] 
SmFeAsO [2.13] 

55 3.915 
3.933 

8.428 
8.495 

SmFeAsO0.85F0.15 [2.14] 
SmFeAsO [2.14] 

43 3.932 
3.940 

8.490 
8.501 

SmFeAsO0.85 [2.6] 
SmFeAsO [2.6] 

55 3.897 
3.933  

8.407 
8.795 

GdFeAsO0.85 [2.15] 
GdFeAsO [2.15] 

53.5 3.890 
3.903 

8.383 
8.453 

GdFeAsO0.8F0.2 [2.15] 51.2 – – 
GdFeAsO0.83F0.17 [2.16] 36.6 4.001 8.650 
TbFeAsO0.85 [2.17] 42 3.889 8.376 
TbFeAsO0.9F0.1 [2.18] 
TbFeAsO [2.18] 

45.5 3.8634 
3.8632 

8.333 
8.322 

TbFeAsO0.8F0.2 [2.18] 45.2 3.860 8.332 
TbFeAsO1−δ [2.19] 
TbFeAsO [2.19] 

48.5 3.878 
3.898 

8.354 
8.404 

DyFeAsO0.9F0.1 [2.18] 45.3 3.8425 8.2837 
DyFeAsO0.8F0.2 [2.18] 43.0 3.8530 8.299 
DyFeAsO1−δ [2.19] 52.2 3.859 8.341 
HoFeAsO1−δ [2.19] 50.3 3.846 8.295 
ErFeAsO0.75 [2.20]a 35.9 3.8198 8.2517 
ErFeAsO0.95 [2.20]a 43.0 3.8238 8.2680 
ErFeAsO0.95 [2.20]a 44.5 3.8219 8.2807 
YFeAsO1−δ [2.19] 46.5 3.842 8.303 
a Nominal starting compositions; polycrystalline samples were synthesized by heating pellets with nominal 
compositions of ErFeAsO1−y (1−y = 0.75–0.95) sandwiched between pellets of LaFeAsO0.8H0.8 compositions at 
1373 K under pressures of 5.5, 5.0 and 5.0 GPa, respectively [2.20]. 
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Information on the influence of the synthesis time and synthesis tempe-
rature on the final temperature of the transition into the superconducting state 
is very limited in the literature. For the HoFeAsO1−xFx system, such data was 
discussed in Ref. [2.21] (see Table 2.2). 

Table 2.2. Synthesis conditions (all samples were synthesized at 10 GPa), 
refined lattice parameters (a, c) and volume (V), Tc, mass fractions, and 
superconducting volume fractions for HoFeAsO1−xFx samples [2.21]. 

Sample tsynth, hr Tsynth, °C a, Å c, Å V, Å3 Tc, K Mass  
frac., % 

Diamag. 
frac., % 

1 2 1 150 3.8246 8.254 120.74 29.3 75 70 
2 2 1 100 3.8272 8.2649 121.06 33.0 74 85 
3 1 1 150 3.8258 8.264 120.96 33.2 73 76 
4 3 1 100 3.8282 8.261 121.07 33.7 84 74 
5 2 1 100 3.8282 8.2654 121.13 35.2 81 57 
6 2 1 100 3.8297 8.270 121.30 36.2 58 46 

 
Although all samples in Table 2.2 have the same starting composition, 

small variations in synthesis pressure and temperature result in a dispersion in 
x around the nominal 0.1 value for the HoFeAsO1−xFx phase and corresponding 
variations in superconducting properties. Tc increases to a maximum value, 
Tc(max), at the upper solubility limit of x in LnFeAsO1−xFx systems [2.14], and 
this is consistent with the observation that the superconducting phases in 
samples 1, 3, and 4, which are heated at high temperatures or for longer times 
and so are likely to have a slightly lower F content, have lower Tc (an average 
value of 32.1 K) compared to other three samples with the average value 
Tc = 34.8 K, made under nominally identical “optimum” conditions. Sample 6 
shows the highest Tc = 36.2 K and the lowest proportion of the diamagnetic 
fraction in the HoFeAsO1−xFx phase. This demonstrates that the sample is at 
the upper limit of the superconducting composition range and so gives a 
realistic Tc(max) for the HoFeAsO1−xFx system [2.21]. 

Also of interest are systematic studies of the pressure effect on properties 
of the obtained materials. In Ref. [2.22], single-phase polycrystalline samples 
of oxygen-deficient oxypnictide superconductors LnFeAsO0.7 (Ln = Sm, Gd, 
Tb, and Dy) were synthesized using high-pressure technique. It was found out 
that the synthesis pressure is a key parameter for synthesizing samples, in 
particular, for heavier lanthanides. It was established that the lattice para-
meters systematically decrease with the atomic number of Ln, reflecting the 
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shrinkage of Ln ionic radius: for the lighter Ln atoms (La, Ce, Pr, Nd), Tc 
increases monotonously with decreasing the lattice parameters from 26 K for 
La to 54 K for Nd, then stays at the constant value around 53 K in the case of 
the heavier lanthanides (Nd, Sm, Gd, Tb, and Dy) (see Fig. 2.2). Obtained 
results suggest the intimate relationship between the crystal structural para-
meters and superconductivity, as well as the possible existence of the inherent 
maximum of Tc located around 50 K in the LnFeAsO based materials [2.22]. 

 
Fig. 2.2 – Relationships between Tc and a-axis lattice parameter for the samples with 

a nominal composition of LnFeAsO0.7 (Ln = Sm(▲), Gd(■), Tb(♦), and Dy(●)) 
synthesized under various pressures ranging from 2.0 to 5.5 GPa.  

Adapted from Ref. [2.22] 
 
Despite the great interest in high-temperature superconductors based on 

LnFeAsO1–yFy and LnFeAsOy expressed in recent reviews [2.23–2.30] and 
monographs [2.31–2.33], the data on isomorphous substitutions of lanthanides 
in Ln positions in the LnFeAsO1–y structure are rather scarce. 

The effect of replacing La atoms by Y atoms in the oxypnictide supercon-
ductor LaFeAsO0.6 was studied in Ref. [2.34]. It has been found that the 
replacement of La3+ by smaller Y3+ in the La1−xYxFeAsO0.6 form leads to the 
decrease in lattice parameters, and superconducting transition temperature 
increases monotonically with increasing x up to 43.1 K at x = 0.5. Similar 

a, Å 
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results were obtained in the study of partial substitution of La for Y in the  
La1–xYxFeAsO0.85F0.15 superconductor [2.35] that, up to x = 0.70, leads to the 
decrease in lattice parameters a and c of the structure by 1.8 % and 1.7 %, 
respectively. It was determined that 15 % F-doped samples reach a maximum 
critical temperature of 40.2 K for the 50 % yttrium substitution. In addition, in 
the mixed lanthanide compounds of La1−xSmxFeAsO0.85, the onset supercon-
ducting critical temperature was found to rise monotonically from 31.2 K to 
55 K with increasing amount of Sm doping from x = 0 to 1 [2.36]. 

Using resistivity and magnetization studies the pressure effect on the 
superconducting transition temperature of Yb doped Ce0.6Yb0.4FeAsO0.9F0.1 
has been investigated [2.37]. It has been established that increase in chemical 
pressure by substitution of smaller Yb3+ ions in place of Ce3+ ions results in 
a significant enhancement of TC from 38 K (Yb free) to 47 K (40 % Yb), 
enhancement in TC with external pressure has been observed for this com-
pound up to a maximum value of Tc = 48.7 K at 1 GPa, beyond which Tc starts 
decreasing monotonously. 

It is also of interest to study the replacement of three-charged lanthanide 
cations by ions with a larger charge that can lead to the creation of novel ma-
terials with a higher Tc. First studies in this direction showed encouraging re-
sults for Tb0.8Th0.2OFeAs [2.38], Gd0.8Th0.2OFeAs [2.39], and Sm0.7Th0.3OFeAs 
[2.40] where values of Tc = 52–56 K were achieved. 

 
 
2.2 Isomorphous substitutions in the LnFeAsO structure 

Isomorphous substitutions of atoms in crystals attract the attention of 
researchers for the reason that many new inorganic materials (phosphors, 
semiconductors, ferroelectric, piezoelectrics, etc.) are created on the basis 
of not individual compounds, but solid solutions. This is due to the fact that 
the properties in the region of homogeneity regularly change depending on the 
composition. The properties of high-temperature superconductors (HTSCs) of 
the first generation based on barium cuprates and rare-earth elements (REEs) 
are the most studied, both in the case of individual compounds, for example 
[2.41–2.43], and solid solutions based on them when modified with other 
REEs [2.44–2.45]. At the same time, REE intersubstitutions for HTSCs with 
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a tetragonal structure of the ZrCuSiAs type, for which more than 150 repre-
sentatives are known [2.46–2.47], have been hardly studied. 

It is known that undoped LnFeAsO compounds are not superconduc-
tors [2.46]. However, those obtained at high pressures (from 2.0 to 5.5 GPa) 
with a lack of oxygen or with partial substitution of oxygen by fluorine do 
superconduct [2.34, 2.48]. Isomorphous substitution of lanthanum or iron 
cations with other cations can lead to an increase in the critical tempera-
ture [2.19, 2.48]. Therefore, the study of isomorphous substitutions in super-
conducting solid solutions is of current interest, as it has been argued in the 
first chapter above. 

To the best of our knowledge, LnFeAsO-based solid solutions with partial 
REE substitution are described only for a limited number of systems: 
La1−xYxFeAsO0.6 (x = 0.0–0.5) [2.34], La1–xSmxFeAsO [2.47], and also for 
Sm1−x/3Scx/3FeAsO1−xFx (x = 0.09–0.27) [2.48]. La1−xYxFeAsO0.6 samples were 
synthesized by heating LaAs, YAs, Fe, and Fe2O3 at 1423 К for 2 h under the 
pressure of 2 GPa [2.34]. When х changes in the range from 0.0 to 0.4, the unit 
cell parameters in the La1−xYxFeAsO0.6 structure naturally decrease from 
a = 4.029 Å and c = 8.729 Å to a = 3.992 Å and c = 8.652 Å, correspondingly. 
In this case, the critical temperatures of the superconducting transition increase 
substantially. However, the experimental determination of substitution limits 
in this work is not entirely unambiguous. The cell parameters really change in 
the range of initial compositions x from 0.0 to 0.4, however, only samples with 
x from 0.0 to 0.1 are single-phase. Samples of initial compositions x from 0.2 
to 0.5 consist of several phases that is explained by the fact that the compound 
of composition YFeAsO does not exist [2.34]. In this case, the La1−xYxFeAsO0.6 
system should be considered multicomponent rather than pseudobinary, and 
the cell parameters can change in the mixed-phase region. The authors [2.34] 
believe that the designations they use for the compositions simply mean the 
nominal value and do not necessarily agree with the actual ones. However, 
there is another point of view: in Ref. [10] the YFeAsO compound is described 
and even the cell parameters are given. It is possible that equilibrium was not 
reached in Ref. [8] due to the fact that the interaction of the components was 
not completed, since the synthesis was carried out for only 2 h, or partial de-
composition of the solid solution occurred when the samples were cooled after 
calcination. 
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Similarly, in the Sm1−x/3Scx/3FeAsO1−xFx system, as x changes in the range 
from 0.09 to 0.27, the unit cell parameters also regularly decrease, and the 
critical superconducting temperatures increase significantly [2.48]. At the 
same time, samples with х ≥ 0.12 are also not single-phase, and the authors 
suggest that x = 0.23 is the substitution limit. Apparently, the substitution limit 
is approximate in this case as well. An increase in the critical temperature Tc 
can be promoted not only by the substitution of samarium for scandium but 
also by the substitution of oxygen for fluorine with an ionic radius smaller than 
that of oxygen. 

In Ref. [2.36], the La1–xSmxFeAsO0.85 system with x = 0, 0.1, 0.2, 0.3, 0.4, 
0.6, 0.8, 0.9, 0.95 and 1.0 was synthesized at a final temperature of 1623 K for 
2 h. Based on the phase composition and the change in cell parameters, an 
unlimited substitution of lanthanum for samarium was established in the x 
range from 0 to 1. In Ref. [2.47], for the same system, it was found that the 
values of the Ln—O and Ln—As interatomic distances also regularly decrease 
with increasing x in the entire range of compositions indicating the substitution 
of lanthanum by samarium. An increase in the transition temperature Tc is due 
to the compression of the crystal structure, which, in the case of isomorphous 
substitution by a smaller ion, is even called the «effect of chemical 
pressure» [2.47]. 

It should be also noted that the limits of isomorphous substitutions in solid 
solutions are significantly affected not only by the synthesis temperature but 
also by pressure. The data on the pressure effect on the critical decomposition 
(stability) temperature of solid solutions indicate that the pressure growth by 
1 GPa leads to its increase by 20–150 degrees [2.49–2.50]. Also, the degree of 
the pressure influence on the miscibility of the system components depends 
on the temperature. Studies of solid solutions in the enstatite Mg2Si2O6 – 
diopside CaMgSi2O6 system carried out at pressures of 5–40 kbar (0.5–4 GPa) 
and temperatures of 1173–1773 K showed that increasing pressure reduces the 
mutual miscibility only starting from 1473 K, while at 1173 K the effect of 
pressure is still very small. The same conclusion follows from the study of the 
solubility of calcium in olivines at different temperatures and pressures [2.49]. 

At present, one of the ways to search for HTSCs with desired properties 
is to study their dependence on the composition in the regions of the solid-
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solution existence. At the same time, the physicochemical foundations of the 
synthesis of solid solutions, such as state diagrams and solubility regions of 
the La1–xLnxFeAsO1−y systems, to the best of our knowledge, are almost not 
studied. Therefore, in particular, authors studying superconductors based on 
LnFeAsO1−y in most cases limit themselves by the properties of individual 
compounds rather than solid solutions. 

At the same time, it is known [2.49–2.50] that solid solutions which are 
synthesized at high temperatures tend to decompose upon cooling that can lead 
to degradation of materials based on them, changes and irreproducibility of 
their properties. In this regard, before the synthesis of solid solutions and the 
study of their properties depending on the composition, it is desirable to know 
the limits of isomorphous substitutions depending on temperature and stability 
of solid solutions in the corresponding areas of the systems under synthesis, 
storage and intended operation conditions. Experimental determination of sub-
stitution limits with X-ray diffraction analysis (XRD) by annealing and har-
dening is complicated by the difficulty of achieving equilibrium at low tem-
peratures due to the low diffusion rate in the solid phase and the possibility of 
partial decomposition of the solid solution during its quenching from high tem-
peratures. In addition, XRD can be inefficient, in particular, for isostructural 
components with similar sizes of substituting structural units, in the cases of 
spinodal decomposition of a solid solution [2.49–2.50] or nanosized particles. 
In such cases, difficulties arise in determining the substitution limits by XRD, 
as was the case in the La1−xYxFeAsO0.6 [2.34] and Sm1−x/3Scx/3FeAsO1−xFx 
systems [2.48]. 

Insufficient information about substitution limits and stability regions of 
solid solutions forces researchers to choose the composition of matrices and 
modifying additives (dopants) either by analogy with related systems or by the 
«trial and error» method that can lead to excessive consumption of expensive 
reagents and an increase in the duration of reearch. Thus, for determining the 
substitution limits, it is rational to use not only experimental but also calcu-
lation methods, devoid of the above disadvantages. The aim of our work has 
been to predict the substitution limits and thermodynamic stability of solid 
solutions with a structure of the ZrCuSiAs type in a wide range of composi-
tions and temperatures in La1–xLnxFeAsO1−y systems with Ln = Ce–Er, and Y. 
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The choice of such systems was also due to the fact that LnFeAsO1−y super-
conductors are perspective naterials for generating very strong magnetic 
fields [2.51]. 

2.3 Calculation method and initial data 

In the general case, according to V. S. Urusov, the mixing energy (in-
teraction parameter) Q which determines possibility and substitution limits, 
consists of three contributions due to the difference in the sizes of the 
substituting structural units, the degrees of ionicity of the chemical bond in the 
components, and the crystal structures of the components [2.49–2.50]. 

Since we are dealing with the intersubstitution of REE in groups of 
systems, both components of which are isostructural to ZrCuSiAs, the third 
contribution is equal to zero. The second contribution, according to [2.49–
2.50], must be taken into account in cases where the electronegativity 
difference Δχ(Ln3+) of ions replacing each other is greater than 0.4. Since the 
value of this difference calculated by us does not exceed 0.111 (Table 1), the 
mixing energy is calculated using the formula [2.49–2.50]: 

Q = 1000Сmnzmzxδ2 J/mol, (2.1) 

where C is an empirical parameter calculated from the expression 
C = 20(2Δχ + 1) kJ [2.50] by the difference in the electronegativity of the 
cation and anion, taken from Ref. [2.52]. The electronegativity of the anion 
χ(AsO1–y) is estimated as the average of the electronegativity of arsenic and 
oxygen; n = 6.8 is the effective coordination number of the substituted struc-
tural unit for the LnFeAsO1–y structure calculated according to S. Batsa-
nov [2.53], since in LnFeAsO1–y the REE cation is surrounded by four arsenic 
anions and four oxide anions located at two significantly different distances 
(for example, in the SmFe0.92Co0.08AsO structure they are equal to 3.277 and 
2,2884 Å, respectively) [2.54]; m is the number of different structural units in 
the components calculated taking into account the peculiarities of the 
LnFeAsO1–y, layered structure with alternating LnO+ and FeAs– layers [2.46]. 
Since the substitution occurs only in the LnO+ layers (the Ln—O and Ln—As 
distances decrease, while the Fe—As distances are constant [2.47]), iron 
cations are passive in isomorphous substitution and, therefore, in accordance 
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with Ref. [2.49] were not taken into account in the calculations: 
m = 1 + 1 + (1 – y) (Table 2); zm, zx are moduli of charges of structural units, 
zm = 3, zx = 2,5 are average charges of oxygen and arsenic ions; δ is the relative 
difference in the sizes of substituting structural units (a size parameter) that 
was calculated taking into account the assisting rule [2.49] by crystalline ionic 
radii: 

δ = [(r(La3+) – r(Ln3+)]/[r(Ln3+) + r(O2–)]. (2.2) 

Crystalline ionic radii of REE were taken according to R. Shannon [2.55] 
for a coordination number of 7 closest to the effective coordination number of 
6.8 according to S. Batsanov [2.53]. The Ln—О distances were taken equal to 
the sum of the crystalline ionic radii of the cations and the oxide anion: 
r(Ln3+) + r(O2–). The choice of the oxide anion as the common structural unit 
in calculating δ is due to the fact that it is located in the LnO+ layer, in which 
substitution occurs. The crystalline ionic radius of oxygen was taken according 
to R. Shannon for a coordination number of 4. The accuracy of the calculation 
of the mixing energy according to the data [2.49] is ± 13 %. 

Since the values of the dimensional parameters δ are less than 0.067 
(Table 2), according to the recommendations [2.49–2.50], the critical decom-
position temperatures of solid solutions were calculated in the approximation 
of regular solutions by the expression Tcr = Q/2kN, where k is the Boltzmann 
constant and N is the Avogadro number. The equilibrium decomposition tem-
perature Td was calculated from the given substitution limit х or the substitu-
tion limit x from the decomposition temperature, according to the Becker 
equation [2.56]: 

– (1 – 2 x) / ln[x/(1 – x)] = kN × Td/Q. (2.3) 

In the two cases, the Q value was taken in cal/mol [2.49–2.50]. 
 
 
2.4 Results and discussion 

Some initial data and results of calculations of the mixing energy and 
critical decomposition temperatures Тcr are summarized in Tables 2.3–2.4. 
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Table 2.3. Values of electronegativity of cations χ(Ln3+), the average 
electronegativity of anions χ(As, O) and constants C calculated for  
La1–xLnxFeAsO1−y solid solutions (Ln = Ce–Er, and Y) 

Ln 1–y χ(Ln3+) Δχ(Ln3+) χ(As,O) χ(As,O) – χ(Ln3+) С, kJ 
La 0.65 1.327 – 2.300 0.973 58.92 
Ce 0.65 1.348 0.021 2.300 0.952 58.08 
Pr 0.65 1.374 0.047 2.300 0.926 57.04 
Nd 0.65 1.382 0.055 2.300 0.918 56.72 
Pm 0.65 1.391 0.064 2.300 0.909 56.36 
Sm 0.65 1.410 0.083 2.300 0.890 55.6 
Eu 0.65 1.433 0.106 2.300 0.867 54.68 
Gd 0.65 1.386 0.059 2.300 0.914 56.56 
Tb 0.65 1.410 0.083 2.300 0.890 55.6 
Dy 0.65 1.426 0.099 2.300 0.874 54.96 
Ho 0.80 1.433 0.106 2.583 1.150 66.00 
Er 0.95 1.438 0.111 2.865 1.427 77.08 
Er 0.75 1.438 0.111 2.488 1.051 62.04 
Y 0.80 1.340 0.013 2.583 1.150 66.00 
Y 0.60 1.340 0.013 2.207 0.867 54.68 

Sm 0.85 1.410 0.083 2.677 1.267 70.68 
 

Table 2.4. Some initial data and results of calculation of mixing energies 
and critical decomposition temperatures for La1–xLnxFeAsO1−y solid solutions 
(Ln = Ce–Er, and Y) 

Ln 1–y r(Ln3+), Å Ln–О, Å δ С, kJ m Q, J/mol Tcr, K 
La 0.65 1.240 2.480  58.92 2.65   
Ce 0.65 1.210 2.450 0.01224 58.08 2.65 1175 70 
Pr 0.65 1.198 2.436 0.01806 57.04 2.65 2513 150 
Nd 0.65 1.186 2.426 0.02225 56.72 2.65 3794 226 
Pm 0.65 1.172 2.412 0.02819 56.36 2.65 6053 361 
Sm 0.65 1.160 2.400 0.03333 55.60 2.65 8346 498 
Eu 0.65 1.150 2.390 0.03765 54.68 2.65 10474 625 
Gd 0.65 1.140 2.380 0.04202 56.56 2.65 13496 806 
Tb 0.65 1.120 2.360 0.05084 55.60 2.65 19422 1159 
Dy 0.65 1.110 2.350 0.05531 54.96 2.65 22722 1352 
Ho 0.80 1.098 2.338 0.06073 66.00 2.80 34759 2075 
Y 0.80 1.100 2.340 0.05982 66.00 2.80 33725 2014 
Y 0.60 1.100 2.340 0.05982 54.68 2.60 25945 1549 

Sm 0.85 1.160 2.400 0.03333 70.68 2.85 11412 681 
Er 0.95 1.085 2.325 0.06666 77.08 2.95 51530 3077 
Er 0.75 1.085 2.325 0.06666 62.04 2.75 38663 2309 

The calculations were carried out for substitutions in the previously 
oxygen-deficient compounds [2.19, 2.20, 2.22], synthesized by the following 
procedures: 

1. Samples of the LnFeAsO0.8 initial composition with Ln = Ho and Y 
sintered for 1 h at a temperature of 1 273 K and a pressure of 5 GPa. After 
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turning off the power, the samples were quickly quenched to room temperature 
by cooling in water for about 1 min and then the pressure was released [2.19]. 

2. Samples of the LnFeAsO1–y composition (y = 0,60–0,70), synthesized 
at a pressure of 2.0 GPa for Ln = La, Ce, Pr, Nd, at a pressure of 5.0 GPa for 
Ln = Sm, Gd, Tb and at a pressure of 5.5 GPa for Ln = Dy. The pellets were 
heated for 2 h at a synthesis temperature of 1 323–1 373 К for Ln = Gd, Tb, 
Dy and 1 373–1 423 К for Ln = La, Ce, Pr, Nd and Sm [2.22]. 

3. Samples with the ErFeAsO1–y nominal composition were synthesized 
by heating pellets, sandwiched between LaFeAsO0.8H0.8 granules at 1 373 K 
under a pressure of 5.0–5.5 GPa [2.20]. 

As can be seen from the data presented, with an increase in the atomic 
number of REEs, values of the dimensional parameter δ, mixing energies Q, 
and critical decomposition temperatures Tcr increase in the series of the  
La1–xLnxFeAsO1−y systems, where Ln = Ce–Er. This is so since in such series of 
systems the difference between the radii of lanthanum and REE ions increases. 
According to the calculated values of the critical decomposition temperatures 
(for х = 0.50) and decomposition temperatures of limited solid solutions (for 
х = 0.01, х = 0.03, х = 0.05, х = 0.09, see Table 2.5) their dependence on REE 
numbers for the La1–xLnxFeAsO0.65 systems with Ln = Ce–Dy (diagram of 
thermodynamic stability of solid solutions) was plotted in Fig. 2.3. 

Table 2.5. Decomposition temperatures (K) of La1–xLnxFeAsO0.65 solid 
solutions, where Ln = Ce–Dy, for х = 0.01, 0.03, 0.05, 0.09, and 0.50 

x Ce Pr Nd Pm Sm Еu Gd Tb Dy 
0,01 30 64 97 154 213 267 344 495 579 
0,03 38 81 122 196 269 338 436 627 734 
0,05 43 92 138 221 305 382 493 709 830 
0,09 50 106 161 256 353 443 571 822 962 
0,50 70 150 226 361 498 625 806 1159 1352 

 

The thermodynamic stability diagram was calculated only for La1–

xLnxFeAsO0.65 systems, where Ln = Ce–Dy, since the chemical composition 
of their components in terms of oxygen content is identical and the value (1−y) 
according to Ref. [2.22] differed only within 0.60–0.70 (for the calculations, 
an average value of 0.65 was taken). 

It follows from the presented diagram that the continuous series of solid 
solutions for the La1–xLnxFeAsO0.65 systems (Ln = Ce–Dy) are thermodynami-
cally stable in the temperature ranges above the critical ones (above curve e). 
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At lower temperatures (below curve e), they can decompose, forming two 
series of limited solid solutions in each system, if the diffusion rate is sufficient 
for the formation and growth of new phases. Similarly, limited solid solutions 
of limiting compositions х = 0.01, х = 0.03, х = 0.05, and х = 0.09 at tempe-
ratures in the region above curves a, b, c, and d are thermodynamically stable 
while below these curves they can decompose. It should be also noted that 
a change in the oxygen content significantly affects the mixing energy, 
the critical decomposition temperatures of solid solutions, and, consequently, 
the stability and substitution limits. Thus, in the La1–xLnxFeAsO1–y systems 
with Ln = Sm, Er, and Y, with growing (1–y) values from 0.65, 0.75 and 0.60 
to 0.85, 0.95 and 0.80, the critical decomposition temperatures increase from 
498, 2 309 and 1 549 K to 681, 3 077 and 2 014 К respectively. 

 
Fig. 2.3 – Diagram of the thermodynamic stability of solid solutions:  

Dependences of the calculated decomposition temperatures for La1–xLnxFeAsO0.65 solid 
solutions (Ln = Ce–Dy) for x = 0.01 (a), x = 0.03 (b), x = 0.05 (c), x = 0.09 (d),  
and x = 0.50 (е) of the REE atomic number. Below the horizontal line at 545 K,  

solid solutions can become metastable 
 
It is known that with decreasing temperature the mobility of the solid-

solution structural units reduces due to the diminishing diffusion rate and the 
solubility regions become narrower [2.49–2.50]. This happens until the diffu-
sion rate becomes so small that the decrease in the solubility regions practi-
cally stops, i. e., spontaneous hardening occurs and solid solutions can be 
metastable. If we assume that the spontaneous hardening temperature is close 
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to the temperature at which the components begin to interact when their 
mixture is heated, leading to the formation of a solid solution, we can estimate 
the spontaneous hardening temperature and the metastability region [2.57]. 
For example, as was shown in Ref. [2.46], the BiCuSO compound with the 
ZrCuSiAs structure, similar in composition to LnFeAsO, was synthesized by 
the low-temperature hydrothermal method at 520 K or using freshly prepared 
highly reactive precursor compounds at 570 K. Therefore, it can be assumed 
that spontaneous hardening of solid solutions of the systems under conside-
ration can occur at temperatures of ~545 К and less. 

Thus, the La1–xLnxFeAsO0.65 systems with Ln = Ce–Dy, continuous series 
of solid solutions, are thermodynamically stable above the critical decompo-
sition temperatures of 70–1 352 K (Table 2.4, Fig. 2.3, curve е). With decrea-
sing temperatures, they become thermodynamically unstable and can split into 
two regions of limited solid solutions. At temperatures below ~545 К solid 
solutions should not decompose, that is, spontaneous hardening will take place 
and they will come to be metastable. 

Based on the foregoing, it can be assumed that continuous series of solid 
solutions in the La1–xLnxFeAsO0.65 systems, where Ln = Ce–Pm, in the range 
of temperatures above the critical one (above 70, 150, 226, and 361°K, respec-
tively) will be thermodynamically stable, and below critical temperatures do 
not decompose, i. e., become metastable. 

In the range from melting temperatures to critical ones (625, 806, 1 159, 
1 352 К respectively), continuous series of solid solutions in the  
La1–xLnxFeAsO0.65 systems with Ln = Eu–Dy will be thermodynamically 
stable. In the temperature range from critical one to ~ 545 К they will de-
compose into two solid solutions, which will become metastable at lower 
temperatures. Since the critical temperature of the La1–xSmxFeAsO0.65 solid 
solutions (498 K) differs from the spontaneous hardening temperature (~ 545 К) 
within the calculational error, it is not possible to conclude unequivocally 
about their behaviour at temperatures close to the critical one. 

According to Fig. 2.3, one can visually estimate the decomposition tem-
perature of limited series of solid solutions by setting the substitution limit or 
determine the substitution limit of lanthanum for REE by setting the decom-
position temperature. To find the substitution limit for a given temperature, it 
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is necessary to draw an isotherm until it intersects with a vertical line drawn 
from the REE number. This will determine the range of compositions in which 
there is a substitution limit, and the interpolation of the vertical segment 
between the two nearest curves gives this substitution limit. The slatter can be 
determined more precisely by constructing for a specific system the depen-
dence of the decomposition temperatures calculated from the Becker equation 
on the composition (the dome of decomposition), which, in the approximation 
of regular solid solutions, will be symmetrical. 

 
Fig. 2.4 – Calculated domes of the solid solutions decomposition  

for La1−xLnxFeAsO0.65 systems 
 

 
Fig. 2.5 – Calculated domes of the solid solutions decomposition  

for the La1−xLnxFeAsO0.65 systems 
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Fig. 2.6 – Calculated domes of the solid solutions decomposition  

for La1−xLnxFeAsO1–y systems with Ln = Dy (1–y = 0.65) (■); Ln = Ho (1–y = 0.80) (●); 
Ln = Er (1–y = 0.75) (▲) 

 
To do this, using the Becker equation, the decomposition temperatures for 

the La1–xLnxFeAsO1−y systems, where Ln = Ce–Er, and Y, were calculated in 
the composition range 1,0 > x > 0 with the step x = 0.05 and the dependences 
of the decomposition temperatures on the composition (domes of decomposi-
tion, Fig. 2.4–2.8) were plotted. Using them, with greater accuracy, one can 
graphically determine the equilibrium composition at a given temperature, or 
the decomposition temperature at a given composition, as well as the stability 
regions of solid solutions. 

 
 
2.5 Comparison of calculation results with literature data 

To the best of our knowledge, there are no literature data concerning mixing 
energies and critical decomposition temperatures in the La1−xLnxFeAsO1–y 
systems. This, of course, makes it difficult to assess the reliability of the 
calculations performed. At the same time, there is information about 
experimental studies of isomorphous substitutions of lanthanum for yttrium 
in the La1−xYxFeAsO0.6 system [2.34] and lanthanum for samarium in the  
La1–xSmxFeAsO0.85 system [2.36]. In the La1−xYxFeAsO0.6 system, the sub-
stitution limit of lanthanum for yttrium at 1 423 K was not determined in 
Ref. [2.34]. Using the XRD method it was shown that the single-phase region 
extends up to х = 0.1 inclusive, the non-single-phase region is located at 
х ≥ 0.2, and the cell parameters decrease in the region up to х = 0.4. It follows 
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from this that the substitution limit is in the interval between 0.1 and 0.4, which 
does not contradict the limit х = 0.27 calculated by us (Fig. 2.7) that is in the 
middle of this interval. 

In the La1–xSmxFeAsO0,85 system, compositions with x = 0, 0.1, 0.2, 0.3, 
0.4, 0.6, 0.8, 0.9, 0.95, and 1.0 were previously studied [2.36]. According to 
the phase composition and the change in cell parameters, unlimited substi-
tution of lanthanum for samarium in the x range from 0 to 1 was established. 
This does not oppose the calculation results, since the established unlimited 
miscibility of the components [2.36] is in the temperature range above 681 K 
which is predicted by us for the thermodynamic stability of continuous series 
of solid solutions, see Table 2.4 and Fig. 2.8. 

 
Fig. 2.7 – Calculated dome of the solid solutions decomposition  

for the La1−xYxFeAsO0.6 system. The straight line at 1 423 K is the temperature  
of the solid solution synthesis [2.34] 

 
Fig. 2.8 – Calculated dome of the solid solutions decomposition  

for the La1–xSmxFeAsO0.85 system. The straight line at 1 623 K is the temperature  
of the solid solution synthesis [2.36] 
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2.6 Conclusions 

1. Within the approximation of regular solid solutions and using the 
crystal-chemical approach by V. S. Urusov, the mixing energies (interaction 
parameters) and critical decomposition (stability) temperatures of solid so-
lutions of the La1–xLnxFeAsO1−y systems (Ln = Ce–Er, and Y) with the 
ZrCuSiAs structure have been calculated. 

2. With an increase in the REE number, the calculated mixing energies 
and critical decomposition temperatures for the La1–xLnxFeAsO1−y solid so-
lutions grow in the Ce–Er series of the rare earth elements. 

3. It is shown that the magnitude of the mixing energy is determined 
mainly by the difference in sizes of the substituting structural units of the 
system components. 

4. The presented thermodynamic stability diagram for the La1–xLnxFeAsO0.65 
systems with Ln = Ce–Dy makes it possible to visually evaluate not only the 
thermodynamic stability, instability, and supposed metastability of solid so-
lutions in a wide range of compositions and temperatures, but also the sub-
stitution limits for limited series of solid solutions according to a given decom-
position temperature, or their decomposition temperature according to a given 
substitution limit. 

5. Continuous series of solid solutions in the La1–xLnxFeAsO0.65 systems 
(Ln = Ce–Pm) in the range of temperatures above the critical ones (above 70, 
150, 226, 361 K, respectively) will be thermodynamically stable, and below 
the critical ones they cannot decompose, i. e., become metastable. In the range 
of temperatures above the critical ones (625, 806, 1 159, 1 352 K, respective-
ly), continuous series of solid solutions in the La1–xLnxFeAsO0.65 systems with 
Ln = Eu–Dy will be thermodynamically stable. In the temperature range from 
critical values to ~ 545 К, they will decompose into two solid solutions, which 
will become metastable at lower temperatures. 

6. The decomposition temperatures of solid solutions in the  
La1–xLnxFeAsO1−y systems, where Ln = Ce–Er and Y, have been calculated in 
the composition range 1.0 > x > 0 with the step x = 0.05 and the dependences 
of their decomposition temperatures on the composition (domes of decom-
position) were plotted. 
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7. The calculation results do not contradict experimental data for 
La1−xYxFeAsO0.6 and La1–xSmxFeAsO0.85 systems obtained by other research 
groups [2.34, 2.36]. 
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3. SPIN-POLARIZED SUPERCURRENT  
IN PROXIMITIZED SINGLET SUPERCONDUCTOR ‒ 
HALF-METALLIC MANGANITE NANOSTRUCTURES 

 

V. Krivoruchko1, V. Tarenkov1 

Abstract 

A common path to superconducting spintronics, superconducting magno-
nics, and topologically protected quantum computing relies on spin-triplet 
superconductivity. However, superconductors realizing spin-triplet p-wave 
pairing are not common in nature. While naturally occurring spin-triplet super-
conducting pairing is very exclusive, proximity effects in ferromagnet / super-
conductor heterostructures can overcome this limitation. That is why artificial 
nanostructures demonstrating equal-spin triplet superconductivity have attracted 
special interest as new functional materials. In this chapter, we present the 
results of experimental and theoretical investigations of proximitized nano-
composites based on half-metallic manganites – singlet s-wave or d-wave 
superconductors. The experimental data obtained, and theoretical reasoning 
give conclusive evidence that proximity induced long-range superconducting 
state in such hybrid structures can be qualitatively and quantitatively under-
stood within the scenario of proximity induced p-wave spin-triplet supercon-
ductivity. It means that the superconductor–half-metallic manganites nano-
structures are promising functional materials for superconducting spintronics, 
superconducting magnonics, and topologically protected quantum computing.  
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3.1 Introduction 

Over past decades, one of the basic directions in the condensed matter 
physics has been search of materials for superconducting spintronics, super-
conducting magnonics, as well as materials with topologically protected quasi-
particle excitations for a quantum computer. 

Digital superconductive electronics is inherently faster at much less power 
dissipation than semiconductor analogue. That is why a superconducting 
version of the conventional spintronics – superconducting spintronics – has 
become the most attractive subject of spintronics in past decades [3.1–3.6]. 
The idea of combining superconductivity with spintronics and magnonics has 
focused on the net spin polarization of quasiparticles in superconductors – 
triplet Cooper pairs. Condensed materials with the spin-triplet superconducting 
pairing state will have great potential applications in the field of supercon-
ducting spintronics and magnonics and recent experimental demonstration of 
spin-polarized supercurrents in proximitized structures provides a guiding 
principle of the functional materials establishment. The field of supercon-
ducting spintronics and magnonics offers new concepts for spin transmission 
by combining superconducting phase coherence and magnetism [3.4, 3.7]. 
Spin-polarized supercurrent offers new ideas to carry information by spin 
instead of charge, leads to massive reductions in ohmic losses and support the 
development of novel spin-based devices. The exploration of superconducting 
spin currents opens fascinating potential for novel spintronic device concepts.  

At the present time in the condensed matter physics a ‘second quantum 
revolution’ is carried out through the introduction of topology-originated 
concepts used to characterize physical states and properties of solids (see, e. g., 
reviews [3.8–3.11] and references therein). With the introduction of topology, 
the description of phase transitions and phases of the system expands and 
includes not only differentiating in terms of a local (Landau) order parameter, 
but also those characterized in terms of global quantities that are measured 
nonlocally and which endow the system with a global stability to perturbations. 
Topological state is a state of a matter characterized by nonzero topological 
number of the wave functions and nontrivial topological states of their 
quasiparticles. One of the promising motivations of topology-originated views 
in the condensed matter physics is searching for materials to create a quantum 
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computer. The most significant obstacles for successful realization of a quan-
tum computer are the quantum decoherence, i. e., a loss of information from a 
system. In this regard, quantum computing, based on topologically protected 
excitations has been considered as an attractive solution for overcoming the 
related problems [3.12–3.16]. It processes quantum information in a nonlocal 
fashion, and in addition exploits the peculiarities of non-Abelian braiding 
statistics, allowing the performance of decoherence-free and fault-tolerant 
quantum logical operations [3.15]. In this standpoint, so-called Majorana fer-
mions have been proposed as elementary building blocks of a topological 
quantum computing hardware [3.16]. 

Majorana fermions are fundamental particles originally proposed in 1937 
by E. Majorana as a real solution to the Dirac equation. The Majorana fermion 
is a fermion that is its own antiparticle has no charge but can carry spin or heat. 
Among promising grounds for topologically protected non-Abelian excitations 
like Majorana fermion is a superconducting state. Topological superconducting 
states support topologically protected gapless Andreev bound states that are 
their own antiparticles, and which partially mimic the so-called zero mode 
Majorana fermions. Recently, a great effort has been put towards an unam-
biguous experimental detection of Majorana fermions in systems which, 
as expected, can be in the topological superconducting state (see, e. g., re-
views [3.8–3.10] and references therein). 

Though topological materials and their unusual properties are in a focus 
of modern experimental and theoretical research in condensed matter physics, 
beyond doubt, experimental identification / observation of Majorana quasipar-
ticles is still absent. Materials having good prospects for the topological super-
conducting phase realization are those with the spin-triplet superconducting 
pairing state [3.10]. Indeed, in a p-wave superconductor (SC) Bogoliubov 
quasiparticles, bkσ = uckσ + vc-kσ+ = (u − v*)ckσ + (v*ckσ + vc-kσ+), have both 
electron and hole components of equal spin projection, σ, and thus can possess 
the Majorana fermions properties. The task is to create necessary conditions 
when p-wave Bogoliubov quasiparticles are ‘forced’ to demonstrate their 
Majorana fermions characteristics, i. e., when bkσ → (v*ckσ + vc-kσ+). Yet, SC 
realizing a spin-triplet p-wave pairing is not common in nature; Sr2RuO4 with 
the critical temperature TC ≈ 1.5 K being the only realistic candidate so far. 
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A way that overcomes this difficulty settles in artificially engineered topolo-
gical materials. Artificially engineered topological superconductivity in SC-
magnet hybrid structures are currently attracting attention, because, as ex-
pected, they represent one of the most promising platforms for realizing topo-
logical superconducting phases [3.10, 3.17–3.21]. Particularly, Choy et al. has 
proposed to create Majorana fermions by depositing a chain of magnetic nano-
particles on an s-wave superconducting substrate [3.17]. Chung et al. [3.18] 
consider the creation of spin-triplet superconductivity and topological phase 
in SC / half-metal heterostructures (a half-metal is a spin-polarized metal at the 
Fermi surface, i. e., a metal for the majority spin and an insulator for the 
minority spin).  

Superconducting phase needs cooling to quite low temperatures. For prac-
tical applications cooling with liquid helium is not adequate because the 
handling is too error prone. In this chapter, we discuss a promising way for 
creating artificial materials with a high-temperature triplet superconductivity. 
These are hybrid spin-singlet superconductors–half-metallic manganites nano-
structures; in particular, nanocomposites of half-metallic manganites nanopar-
ticles and s-wave or d-wave SCs. A key factor of these hybrid structures is 
local high-temperature triplet superconductivity of half-metallic manganites. 
The experimental evidence for the existence of latent (noncoherent) spin-
triplet pairing in half-metal manganites is presented and conditions favoring 
their topological superconductivity are discussed. Our findings presented here 
are substantially based on the experimental results, especially obtained in 
Refs. [3.22–3.36], evidencing unconventional superconducting proximity 
effect in SC / half-metallic manganites hybrid structures.  

Summing the above, a common path to superconducting spintronics, 
superconducting magnonics, and topologically protected quantum computing 
relies on spin-triplet superconductivity. While naturally occurring spin-triplet 
superconducting pairing is very exclusive, proximity effects in ferromagnet / 
superconductor heterostructures can overcome this limitation. 
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3.2 Coexistence of superconductivity and ferromagnetism, 
 proximity effect 

Ferromagnetic order and singlet superconductivity are incompatible, since 
in a ferromagnet (F) the exchange field Hexc splits conduction bands. In a ty-
pical metal ferromagnets the exchange energy is larger than the pairing energy 
of electrons in singlet Cooper pairs by orders of magnitude, so that only triplet 
amplitudes of the form f tr(r) = g1(r)|↑↑> or f tr(r) = g2(r)|↓↓> can be supported. 
That is why, when a metallic F is in contact with s-wave SC, s-wave Cooper 
pairs can penetrate into F layer by diffusing only over the small distance given 
by the superconducting penetration depth ξF = (4ħDF/Hexc)1/2, here DF is the 
diffusion coefficient of the conduction electrons in the F layer).  

The incompatible nature of superconductivity and ferromagnetic order 
was confirmed in various materials and geometries. Yet, number of experi-
mental facts point also that a physical interpretation of the proximity effect 
when Cooper pairs are broken by a strong exchange field Hexc in the F layer 
can be too simplified. Long-ranged proximity effects have been observed in a 
variety of ferromagnetic materials, including wires [3.37, 3.38], bi- and multi-
layers [3.39], half-metallic La0.7Ca0.3Mn3O [3.40] and CrO2 [3.41], rare-earth 
metals with helical magnetic structure [3.42] etc. Coexistence of superconduc-
tivity and ferromagnetism close to the interfaces in hybrid SC/F systems leads 
to unusual and interesting phenomena. If a ferromagnet with a uniform 
exchange field is in a metallic contact with a SC, from a theoretical viewpoint, 
the base physics is well understood, and the proximity effect is described by 
considering the splitting of electronic bands of opposite spins [3.43]. The si-
tuation becomes more complicated when the magnetic structure is inhomo-
geneous. Theories [3.26, 3.44, 3.45] predict the appearance of a long-range 
proximity effect if there is a spatial variation of the magnetization in the F 
layer. In this case, the triplet component of anomalous correlations needs to 
be taken into consideration with a characteristic coherence length of ξF = 
(ħDF/2πT)1/2 that can be as large as ∼100 nm at low temperatures (here T is 
the temperature; we choose kB = 1). See, e. g., the discussion in Ref. [3.5, 3.26, 
3.45] and references therein.  

Magnetic inhomogeneities may, in principle, be artificially generated in 
ferromagnets. Yet, existing technology cannot create them in a controlled way 
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at the SC/F interface with a nanoscale precision so that the most realistic 
scenario is to use a ferromagnet with given magnetic inhomogeneity. An inte-
resting limit of systems with tunable inhomogeneity of the magnetic partner is 
SC/F nanocomposites. Being an experimentally accessible electronic system 
with controllable parameters, such heterostructures offer a unique testing 
ground for studying superconducting proximity effect in systems with an 
arbitrary length of magnetic disorder. Superconductivity in a granular mixture 
of superconductor-insulator films has been extensively studied, both experi-
mentally and theoretically, in the framework of the percolation theory (see, 
e. g., Ref. [3.46]). The proximity effects in granular superconductor–normal-
metal structures are also explored [3.47, 3.48]. Proximity effects in composites 
of a (nano)granular half-metal ferromagnet (hmF) and conventional s-wave or 
d-wave superconductors will be discussed in Sec. 3.4.2.  

Equal-spin p-wave triplet Cooper pairs are immune to the exchange field 
and can propagate into ferromagnetic metals over the same long distance as 
singlet pairs into normal metals. However, superconductors realizing a spin-
triplet p-wave pairing are not common in nature; Sr2RuO4 with TC = 1.5 K 
being the only real candidate, so far. That is why artificial materials demonst-
rating p-wave superconductivity have attracted notable interest. A microsco-
pic quantum mechanism on which the long-range triplet condensate induced 
in artificial materials is based on the Andreev reflection [3.49]. 

As is known, at energies below the superconducting gap, the charge 
transport through a normal nonmagnetic (N) metal been in contact with a SC 
is possible only due to the specific two-particle process, called Andreev 
reflection [3.49]. In the N metal, an incident electron above the Fermi energy 
EF and an electron below EF with the opposite spin are coupled together and 
transferred across the interface into the SC side, forming a singlet Cooper pair 
in the condensate. Simultaneously, an evanescent hole with opposite momen-
tum and spin appears in the N metal. This implies the doubling of the normal-
state conductance since two electrons are transferred across the interface into 
the SC region where they form a spin-singlet Cooper pair. Unlike this con-
ventional Andreev reflection, a spin-active interface with interfacial spin-flip 
scattering also yields Andreev reflection with an equal spin of electrons and 
holes [3.5, 3.50], responsible for spin-triplet pair correlations, see Fig. 3.1. As 
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the Cooper pair’s size is determined by the superconducting coherence length 
s-wave Cooper pairs extend on a coherence length from the interface SC/F 
into the F bulk and near the SC/F interface a singlet-triplet mixed Cooper pairs 
state is formed. (For more details the reader is referred, e. g., to articles [3.5, 
3.43, 3.45, 3.51]). The two phenomena, proximity effect and Andreev reflec-
tion are intertwined and cannot be discussed separately from each other. The 
superconducting proximity effect is evidence of the macroscopic quantum co-
herence and prove the macroscopic character of the Cooper pair wave function. 

 
Fig. 3.1 – Andreev reflection at the SC/F interface. Adapted from Ref. [3.5] 

 
Symmetry classification of Cooper pairs in superconductors. Note to 

avoid confusion, here and below we mean the ordinary triplet pairing. That is 
the Cooper pair wave function is even-spin, even-frequency, odd-momentum. 
An unconventional new type of superconducting pairing function (even-spin, 
even-momentum, odd-frequency) the so-called odd triplet pairing, was 
predicted theoretically [3.45], too. To date, it remains under question direct 
experimental verification of the odd-frequency symmetry Cooper pair wave 
function, and we will not consider this superconducting state below. 

 
 
3.3 Ferromagnetic manganites, spin-polarization, 

 and half-metallicity 

Magnetic and transport properties of manganites R1-xAxMnO3, where 
trivalent cations R3+ are substituted by divalent ones A2+, are discussed in 
detail in reviews [3.52–3.54] Here we summarized the main physics and 
statements.  
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Bulk samples. The initial compound RMnO3 has a perovskite structure. It 
is electrically homogeneous due to the single valence of the Mn3+ ion and 
below the Neel temperature TN ≈ 130 K exhibits an antiferromagnetic order. 
Compounds of the type R1-xAxMnO3, where a divalent ion A2+ (= Ca, Sr, Ba, 
Pb, …) replaces the trivalent ion R3+, are electrically inhomogeneous with a 
competition between different types of magnetic interactions among the Mn 
ions due to random positions of ions Mn3+ and Mn4+ having different ionic 
radii, charges, and spins. When the concentration of the A2+ ions exceed ~1/8, 
the material undergoes a transition to a ferromagnetic state with a metallic type 
of conductivity. The Curie temperature of the ferromagnetic state depends 
significantly on the extent of substitution and the difference in the ionic radii 
of the A2+ and La3+ ions. The highest value of Curie temperature, close to 360 K, 
is attained in the compound La5/8Sr3/8MnO3. The ferromagnetic-paramagnetic 
transition itself appears to be close to a second order phase transition and the 
behavior of the system is described by critical indices corresponding (or close) 
to a three-dimensional Heisenberg ferromagnet. (The specific realization of 
the metal-insulator transition in manganites with colossal magnetoresistance 
caused by inhomogeneities in the electronic and magnetic states of the 
manganites near the Curie temperature is reviewed in Refs. [3.52–3.54]).  

In terms of the traditional model proposed by Zener [3.55], magnetic and 
transport properties of the substituted manganites are generated by the so-
called ‘double-exchange’ interaction. In brief, consider two cations Mn3+ and 
Mn4+ located at equivalent crystallographic positions and separated by an O2- 
anion. The Mn4+ ion is in a 𝑡𝑡2𝑔𝑔

3  configuration and the Mn3+ ion is in a 𝑡𝑡2𝑔𝑔
3 𝑒𝑒𝑔𝑔

1  
configuration. Because of the large intra-atomic Hund coupling, the three 
electrons in the 𝑡𝑡2𝑔𝑔 level form a localized spin S = 3/2. Due to the same Hund 
rule, the 𝑒𝑒𝑔𝑔 electron on the Mn3+ ion has its spin aligned parallel to the 
localized spin of the ion. Since the positions of the Mn ions are equivalent, the 
Mn3+ – O2- – Mn4+ and Mn4+ – O2- – Mn3+ configurations are energetically 
equivalent, i. e., the ground state of the pair is degenerate. It is natural to expect 
a strong resonance coupling between the two configurations, which can be 
interpreted as a state of two Mn4+ cations with a generalized 𝑒𝑒𝑔𝑔-electron (or 
Mn3+ cations with a generalized hole). As an 𝑒𝑒𝑔𝑔-electron moves along the 
lattice it is energetically favorable that all the localized spins be parallel to one 
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another, i. e., a ferromagnetic ordering of the localized spins minimizes the 
kinetic energy of the 𝑒𝑒𝑔𝑔-electrons. When the substitution degree is sufficiently 
high, the 𝑒𝑒𝑔𝑔-electrons form a ferromagnetic metallic state. As a result, in the 
ground state, all conducting electrons are spin-polarized in the direction of the 
spontaneous magnetic moment and there are no electrons with opposite spins. 
This type of metals is referred to as half-metallic ferromagnet (hmF), i. e., it 
is a metal for the majority spin and an insulator for the minority spin [3.56].  

Experimental data on manganites with a perovskite structure, where the 
magnetic ions are ions of a single element with different valences, are in good 
qualitative and quantitative agreements with this model. For example, Bowen 
et al. curried out the measurements a current’s spin polarization in magnetic 
tunnel junctions with the manganite La2/3Sr1/3MnO3 as the electrode material. 
The results obtained suggest that the electrode’s current spin polarization is at 
least 95 % [3.57]. That is why for inducing triplet correlations in a singlet SC 
the high-transmission contacts of half-metallic ferromagnets and SC are most 
promising ones. Yet, to overcome the spin conservation low and allow for 
proximity induced triplet amplitudes in the ferromagnet, see Fig. 3.1, one 
needs an inhomogeneous non-collinear magnetization in the interface region. 
One such possibility is nanoparticles of hmF manganites.  

Nanoparticles. A natural question arises whether the bulk characteristics 
of manganite are retained in nanosized samples. In Refs. [3.58–3.60] pe-
rovskite-type manganese oxide nanoparticles (NPs) with particle sizes of 15–
30 nm and 100–200 nm were prepared and studied using 55Mn nuclear mag-
netic resonance, superparamagnetic resonance, and magnetic measurements. 
The nuclear spin dynamics results provided direct evidence that the grain 
boundary of NPs is not sharp in magnetic and electrical respects, but rather 
should be considered as a transfer region of several (~ two) monolayers with 
magnetic and structural orders different from the inner part of the grain. The 
cores of the NPs are magnetically homogeneous. The local structure of the 
outer shell is that of perovskites yet modified by vacancies, stress, disordering 
of atoms in perovskite cells and broken bonds on the surface. The Curie 
temperature, determined as the magnetization onset was close to that in a bulk 
crystalline sample of the same composition. Electrical transport properties 
support this physical picture. Hence, the manganites nanoparticle’s inner parts 
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are magnetically identical to a bulk sample of the same composition, and in 
the inner part the strength of the double exchange interaction and the half-
metallic conductivity are preserved. 

 
 
3.4 Two-dimensional Berezinskii–Kosterlitz–Thouless topological 

 phase transition in three-dimensional nanocomposites 

As already noted above, hybrid SC/hmF nano-heterostructures can enable 
new intelligently tailored functionality and have gained attention over the past 
few years as promising functional materials for superconducting spintronics. 
Apart the purpose of superconducting spintronics functional materials, trans-
port properties of SC/hmF nanocomposites have been attracted a fundamental 
interest themselves, as well. One of the distinctive features of SC/hmF nano-
composites is an unconventional superconducting proximity effect, that deter-
mines their important characteristics to be beyond the conventional chaotic 
two-component nanostructures. Due to the proximity effect in SC/hmF nano-
composites, geometric contacts and electrical connectivity of individual 
particles are often not the same issue [3.61 - 3.65].  

To date, a few works have been reported on the study of transport pro-
perties of a SC with half-metallic magnetic nanoparticles composites. Uncon-
ventional double percolation transition was identified by Liu et al. [3.61] for 
a binary network composed of MgB2 superconductor and CrO2 hmF nano-
particles. It was shown that the double percolation transition (superconductor–
insulator–metal) is controlled by volume fractions of the components and 
originates from the suppressed interface conduction and tunneling as well as 
a large geometric disparity between particles [3.61]. In Ref. [3.62], Acharya 
et al. prepared and studied electrical transport characteristics of 
Bi2Sr2CaCu2O8/BiFeO3 nanocomposite with various weight percentage of 
superparamagnetic BiFeO3 nanoparticles. Measurement of the critical current 
density reveals that the superconducting transition temperature splits into two 
ones, TC1 and TC2, along with broadening of overall superconducting transi-
tion. Such behavior has been attributed to a weak-link nature of a granular SC 
as the latter is composed of superconducting grains embedded in a non-super-
conducting host. The point is that for nanoparticles the geometric contacts and 
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electrical connectivity of individual particles are often not the same. Of the 
two superconducting transitions temperatures, the higher one, TC1, marks the 
superconductivity in grains’ balk whereas the grain boundary remains normal, 
and the lower one, TC2, emerges when the grain boundary becomes super-
conducting, too. 

Conventional Berezinskii–Kosterlitz–Thouless (BKT) transition [3.66–
3.68] in the case of superconducting system has topological nature and is 
associated with a vortex-antivortex (un-) binding [3.69]. At temperatures 
below TBKT, the vortex-antivortex pairs composite a bound state; for T > TBKT, 
the vortex proliferation takes place, and the system enters a Coulomb gas-type 
state. This BKT topological transition is general and was observed in many 
two-dimensional systems, such as superfluid and superconducting films [3.70], 
two-dimensional spin systems [3.71, 3.72], etc. Although the BKT transition 
is a well-known phenomenon on planar surfaces, for curved spaces the situa-
tion is not so clear. The realization of a classical BKT transition in nominally 
three-dimensional systems has not an obvious case a priori [3.73, 3.74], as 
well. 

It is well known that in the vicinity of the BKT transition to a super-
conducting state the resistance of thin films is described by the expression (see, 
e. g., the review [3.69] and references therein):  

𝑅𝑅(𝑇𝑇) = 𝑅𝑅0exp �−4𝛼𝛼 �𝑇𝑇𝐶𝐶0 − 𝑇𝑇𝐵𝐵KT
𝑇𝑇 − 𝑇𝑇BKT

�
1/2

�. (3.1) 

Here the parameter α is uniquely expressed in terms of the effective mass 
of the core of a fluctuating vortex and an antivortex. It was shown [3.74] that 
α is not an arbitrary constant of the order of unity but is causally related to the 
effective mass µ of the vortex core in a two-dimensional (2D) SC. To be exact, 
α = µ/µXY where µXY stands for the mass of the vortex core in the classical XY 
model. In the most cases, when the two-dimensional nature of the film’s 
superconducting transition is not in doubt, and especially for high-TC cuprate 
SCs, the ratio α = µ/µXY turned out to be limited by a rather narrow interval of 
1 ≲ α ≲ 1.5 [3.75, 3.76]. 
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3.4.1 s-wave superconductor 

In this subsection, we discuss transition from the normal state to super-
conducting one in chaotic two-component nanostructures, which are nano-
composites consisting of MgB2 superconductor microparticles and nanopar-
ticles of a half-metallic La2/3Sr1/3MnO3 (LSMO) ferromagnet (see Ref. [3.33]).  
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Fig. 3.2 – (a) Experimental (solid curve) and theoretical [dashed curve, Eq. (3.1)] 
dependences R(T) for the MgB2/La2/3Sr1/3MnO3 (3:1) nanocomposite.  

(b) The same dependences represented in a logarithmic scale on the ordinate axis. 
Adapted from Ref. [3.33] 

 
Figure 3.2(a) displays typical temperature dependence of the nanocom-

posite resistance R(T) (solid line) in a broad temperature range. In addition to 
a steep fall of resistance at T < ТC that is typical of manganites (not shown in 
the plot), there is a virtually linear dependence R(T) in the T* < T < ТC tem-
perature range that is followed by a significant decrease in resistance at a 
temperature of T* ≈ 40 K ≈ TC0(MgB2) ≈ 39 K, Fig. 3.2(a). Figure 3.2(b) dis-
plays the same dependence in a logarithmic scale on the ordinate axis. The most 
interesting observation is that the temperature behavior of the resistance at 
T < TC0 is surprisingly well described by Eq. (3.1) [dashed lines in Figs. 3.2(a) 
and 3.2(b)]. Thus, the R(T) behavior points that in the three-dimensional (3D) 
nanocomposite, transition to a superconducting state goes through a BKT 
transition similarly to a 2D system with the transition temperature TBKT ≈ 18 K 
and parameter α = 1 – 1.2. It should be noted that the theoretical Eq. (3.1) and 
experimental R(T) dependences agree well in a broad temperature range of 
Tc0 – TBKT ≈ 20 K, where the resistance varies by three orders of magnitude.  
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The transport characteristics of the nanocomposite also proved to be very 
sensitive to the external high-frequency (HF) irradiation. Figure 3.3(a) shows 
the effect of the HF irradiation on resistive transitions in the temperature range 
TBKT < T < TC0. It should be noted that the HF signal applied to the MgB2 
sample does not result in significant changes in the R(T) dependence [see the 
R(T) dependence for MgB2 in Fig. 3.3(a)]. At the same time, the resistance of 
a nanocomposite increases inder the HF irradiation. The HF-signal caused 
changes in the current-voltage (I–V) characteristics of the nanocomposite are 
shown in Fig. 3.3(b). The increase of the resistance and the decrease of the 
excess current under the influence of a small amplitude of the electromagnetic 
signal indicate that weak couplings (Josephson-like contacts) in the –MgB2–
LSMO–MgB2– chains are suppressed. 
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Fig. 3.3 – The effect of the HF irradiation on the (a) resistive transition and (b) current-

voltage characteristics of MgB2/La2/3Sr1/3MnO3 (3:1) nanocomposite.  
The straight dashed line is plotted to visualize the effect of the HF irradiation  

on the excess current Iexc at Т = 4.2 K. Adapted from Ref. [3.33] 
 
According to the classical BCS theory of superconductivity, an equilib-

rium density of Cooper pairs at the temperature TC0 exists concurently with 
the onset of a dissipation-free state. The superconducting state of the system 
is described by a complex order parameter  

Φ(r) = |Φ| exp{φ(r)}, (3.2) 

where |Φ| ≡ Δ is the binding energy of a Cooper pair, and the phase φ(r) 
characterizes the coherent state of Cooper pairs. In the absence of the current 
in a superconductor, φ(r) = const. In 3D systems, the destruction of super-
conductivity usually occurs via vanishing the order-parameter modulus |Φ|, 
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due to an increase in temperature to TC0 or under the action of a magnetic field 
having a critical magnitude. Distinguishing feature of 2D superconducting 
systems is that a gas of fluctuations may exist in the form of spontaneously 
generated magnetic vortices at a temperature below the temperature TC0 of the 
bulk superconducting transition (see, for example, the review [3.69]). The 
vortices are generated in pairs with opposite directions of ring currents 
(vortex–antivortex pairs), which annihilate after a finite time because of 
collisions. In a zero magnetic field, the number of vortices having opposite 
signs is the same and is determined by the dynamic equilibrium between their 
spontaneous generation and annihilation. The wave-function phase changes 
because of going around an immobile vortex by 2π; therefore, the free motion 
of vortices results in fluctuations of the phase. If the amplitude of the fluctua-
tions is large enough, the coherence of the superconducting state is lost. The 
order parameter modulus Δ remains non-zero in most of the sample volume 
(and vanishes only near the vortex axis). 

If the temperature decreases, the BKT transition occurs at some tempera-
ture TBKT (< TC0): vortex pairs are no longer generated, vortex density sharply 
decreases to become exponentially small, and dissipation becomes exponen-
tially small as well. Thus, in the TBKT < T < TC0 temperature range, Cooper 
pairs coexist in 2D superconductors with vortices. Dissipation decreases due 
to the presence of Cooper pairs but does not vanish. In samples with defects, 
the BKT transition broadens due to internal non-uniformities, and this circum-
stance should be considered to ensure that the numerical estimates of system 
parameters are correct [3.75, 3.76]. 

If a sample consists of superconducting granules embedded into a normal 
(non-magnetic) metal, the superconducting state is destroyed by another 
mechanism: transition to the resistive state occurring due to the loss of phase 
coherence in the system with a finite order parameter modulus |Ф| in individual 
superconducting granules (see, for example, the review [3.77]). This implies 
that the system is in the dissipative state, while individual granules remain in 
the superconducting state. In this case, charge may be transferred from one 
granule to another via two channels jtot = jS + jN: by the Josephson current jS 
and uncorrelated electrons jN. If charge is transferred by the Josephson current 
of Cooper pairs, the phases of the order parameter between granules partici-
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pating in the current transfer are correlated, and a macroscopic superconduc-
ting state is established between them. However, the Josephson currents can 
be suppressed by fluctuations, such as due to a large normal resistivity between 
granules or external influences. Then the charge is transferred between the 
granules due to single-particle excitations, jtot → jN = еNe, the concentration of 
which, Ne, is exponentially small in the granules due to their superconducting 
state: Ne ∝ exp(−Δ/T) (е is the electron charge). In the general case, a resistive 
state with a non-zero equilibrium density of Cooper pairs is realized in the 
system. This is manifested experimentally by the emergence of an excess 
current in the current-voltage characteristics of the sample. 

Specific features of the BKT transitions in superconductor / normal metal 
(SC/N) proximity structures were studied in Refs. [3.78–3.80]. Particularly, in 
proximity Pb–Sn film contacts in the temperature range TC0(Sn) ≈ 3.75 K < 
T < TC0(Pb) ≈ 7.3 K the authors of Ref. [3.78] observed a resistive transition 
to the superconducting state that reproduces the main features of the BKT 
transition. In the same temperature range, nonlinear current-voltage 
characteristics were observed as it had been predicted in Ref. [3.79] for the 
case of the topological ordering of vortices in 2D superconductors. 

Although the layered proximity SC/hmF structures have been actively 
studied using both experimentally and theoretically (see, for example, re-
views [3.26, 3.45, 3.51] and references therein), a satisfactory description of 
the properties of SC/hmF nanocomposite materials is still missing. As was 
noted above, main characteristics of SC/hmF nanocomposites (critical tran-
sition temperatures, current-voltage characteristics, percolation transition 
thresholds, etc.), most likely, cannot be quantitatively described by standard 
percolation models (see a discussion in Refs. [3.33, 3.34]). The analysis of the 
structure of the MgB2/LSMO nanocomposite shows that nanosized LSMO 
grains fully ‘cover’ the significantly larger MgB2 granules. This assumption 
is supported by measurements of sample density after pressing. For example, 
the density of the MgB2 plates produced under a pressure of 40–60 kbar is  
(72 ± 3) % of the MgB2 single crystal density. The density of the LSMO 
nanopowder compressed under the same pressure was a mere (68 ± 3) % of 
the single-crystal density. At the same time, the density of the MgB2/LSMO 
(26 % LSMO) composite was (96 ± 3) % of the calculated value. Such a high 
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composite density indicates that the LSMO nanoparticles ‘spread’ under high 
uniaxial pressure across the sample volume, filling in pores that surround large 
MgB2 granules.  

Under these types of conditions, the onset of superconductivity occurs in 
each MgB2 microgranule independently, and BCS-type fluctuations are formed 
at the temperature of the condensate formation in bulk MgB2. The magnetic 
fluxes caused by the magnetization of manganite nanoparticles are coupled to 
these nanoparticles and no longer fluctuate at temperatures T << ТC. A resis-
tive state emerges in the nanocomposite, featuring a nonzero equilibrium con-
centration of Cooper pairs and a frozen magnetic field created by the LSMO 
nanoparticles. If the temperature decreases further, a (quasi-) two-dimensional 
structure is most likely formed in the system in the TBKT < T < Tc0 temperature 
range; it consists of superconducting granules covered by ferromagnetic nano-
particles (hmF–SC–hmF). The manganite nanoparticles contacting with MgB2 
transitioned to the superconducting (triplet) state induced by the proximity 
effect [3.28–3.30].  

This physical model provides an explanation for the agreement between 
the observed dependence R(T) (Fig. 3.2) and Eq. (3.1) deduced for 2D systems. 
Thus, we are dealing with a composite, the main resistive losses of which are 
caused by current flowing through the ferromagnetic LSMO granules that 
cover the MgB2 granules (an analog of a 2D shell / plane). As the temperature 
decreases, the processes that result in the BKT transition are realized in the 
two-dimensional superconducting LSMO layers (contacting with MgB2). In 
the superconducting state of the nanocomposite, an overcurrent flows through 
the Josephson-like junctions –SC–hmF–SC–hmF–SC–. If the nanocomposite 
is irradiated with a small-amplitude HF signal, the currents induced by the HF 
signal are sufficient to suppress weak Josephson junctions between supercon-
ducting LSMO nanoparticles. This contributes to the creation of single-particle 
charge carriers, which is recorded as the emergence of additional resistance 
and the decrease in the excess current (Fig. 3.3). That is, in the nanocomposite, 
the main effect of the high frequency field is the destruction of the coherent 
state of weakly linked Josephson junctions formed by manganite layers that 
are in a superconducting state due to the proximity effect (for more details, see 
Ref. [3.81, 3.82]). 
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3.4.2 d-wave superconductor 

MgB2 is an s-wave superconductor. In this subsection, we discuss results 
of experimental investigations and theoretical analysis of the transition to a 
superconducting state of random binary nanocomposites of d-wave cuprate SC 
Bi2Sr2Ca2Cu3O6+x (Bi2223) microparticles and hmF La2/3Sr1/3MnO3 (LSMO) 
nanoparticles – Bi2223/LSMO nanocomposites [3.34, 3.35]. 
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Fig. 3.4 – The nanocomposite’s (20 % LSMO) resistance temperature dependence. 
Main panel: Experimental, black solid curve, and theoretical, Eq. (3.1), red dashed 
curve, R(T) behavior. Insert: Effective α = µ/µXY where µXY is the vortex core mass  

in the classical XY model. Adapted from Ref. [3.35] 
 
Figure 3.4 displays experimental temperature dependence of the 20 vol. % 

of LSMO nanocomposite (black solid line) resistance R(T) in a temperature 
range below TC0 of Bi2223. In addition to a steep fall of resistance at T < ТC0, 
there is a virtually parabolic dependence R(T) in the temperature range ~ 30–
60 K that is followed by a significant decrease in resistance. The most interesting 
observation is that the nanocomposite’s resistance temperature behavior at 
T < 55 K is surprisingly well described by Eq. (3.1), red dashed curve in 
Fig. 3.4. It should be noted that the theoretical Eq. (3.1) and experimental R(T) 
dependences agree well in a broad temperature range of ΔT ≈ 32 ÷ 55 K, 
where the resistance R varies by three orders of magnitude. Such R(T) depen-
dence points that the 3D nanocomposite goes through the BKT-like transition 
similarly to a 2D system with the transition temperature TBKT ≈ 32.5 K and the 
parameter α equals to ≈ 1.27. 



103 

In the context of the genuine BKT transition broadening in inhomo-
geneous layered SCs, the temperature behavior of the I–V characteristic should 
correspond to the dependence V ~ |I|a(T), with the exponent a(TBKT) = 3 and 
a(T) → 1 above TBKT [3.75, 3.76, 3.79, 3.80]. Figure 3.5 (a) displays a loga-
rithmic plot of I–V characteristics of the sample with 20 % LSMO at tempera-
tures spanning the range TBKT ≤ T < TC0. At T = 52.5 K the I–V curve is appro-
ximately linear, while at TBKT, V ~ I3. Experimental (points) temperature de-
pendence of the parameter a(T) in V ~ |I|a(T) dependence is shown in Fig. 3.5 (b), 
as well. The choice of TBKT which provides the best fit to the resistance 
theory [3.79, 3.80] also corresponds to the value at which the I–V curves have 
an exponent a(TBKT) ≈ 3. Again, we have observed that the transition to a 
superconducting state, the 3D nanocomposite’s I–V characteristics, are well 
described within a 2D topological transition approach and is associated with 
the BKT-like superconducting transition [3.75, 3.76, 3.79, 3.80]. 
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Fig. 3.5 – (a) Logarithmic plot of I–V characteristics of the sample 20 % LSMO 

at temperatures spanning the range TBKT ≤ T < TC0 (T = 31.0 K, 32.3 K, 39.3 K, 39.7 K, 
42.3 K, 42.7 K, 46.8 K, 48.8 K, 50.8 K, 52.7 K); points – experiment, blue solid lines – 
theory. (b) Experimental data (points) and quadratic approximation (solid line) for the 

temperature dependence of the parameter a(T), V ~ |I|a(T). Adapted from Ref. [3.35] 
 
As in the case of the MgB2/LSMO nanocomposite, it is naturally to 

suggest that the Bs2223/LSMO sample’s resistivity distinctive features are 
determined by an inhomogeneous spatial distribution of the local supercon-
ducting grains coupled by Josephson currents. The validity of the experimental 
data interpretation has been supported by the effect of an external HF radiation 
on the nanocomposite’s transport characteristics.  
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Fig. 3.6 – Effect of the HF radiation ~ 100 MHz on the resistive transition of a Bi2223 

sample and nanocomposites with 20 % of LSMO. Adapted from Ref. [3.35] 
 
Figure 3.6 demonstrates the effect of the HF irradiation on resistive 

transitions in the temperature range T < TC0 in the nanocomposites 
Bi2223/20%LSMO and in compacted Bi2223 sample. As it is shown in 
Fig. 3.6, the HF signal applied to the compacted Bi2223 sample does not cause 
noticeable changes in the R(T) dependence. At the same time, when the nano-
composite is a subject of the HF irradiation, a tail with an upward curvature 
change demonstrating increasing resistance. This is typical for the fluctuation 
resistivity near the TBKT transition [3.77] when the resistive tail can be attri-
buted to the inhomogeneous spatial distribution of the local superfluid, caused 
by intrinsic inhomogeneous density distribution in the systems. 

The changes in the I-V characteristics of the 20 % LSMO nanocompo-
site’s superconducting state under the HF radiation are shown in Fig. 3.7. At 
small amplitudes of the electromagnetic signal, an increase in the resistance 
and a decrease in the excess current indicates that weak couplings (Josephson-
like contacts) are suppressed in the –Bi2223–LSMO–Bi2223– chains. Thus, 
the transport characteristics of the 3D nanocomposite are extremely sensitive 
to the external HF radiation.  

Thus, as for the MgB2/LSMO nanocomposite, in the case of the 
Bi2223/LSMO nanocomposite the proximity effect possesses a few specific 
peculiarities.  
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Fig. 3.7 – Effect of the HF radiation ~ 100 MHz on current-voltage characteristics  

of the nanocomposite with 20 % LSMO. Adapted from Ref. [3.35] 
 
First, because the contacts between Bi2223 grains are in the bulk through 

the half-metallic LSMO nanograins, this causes significant broadening of the 
nanocomposite transition to a superconducting state. Second, for high-TC SCs 
with a d-wave Cooper pair symmetry [3.26], theory predicts, and experiment 
provides evidence that in proximity coupled d-wave SC/ferromagnet 
structures an unconventional (spin-triplet) superconducting state can be 
generated. This also means that in the nanocomposite a new geometrical 
length has been generated that characterizes unconventional superconducting 
state (a mixture of d-wave singlet and p-wave triplet Cooper pairs) in the 
proximity-coupled regions.  

 
3.4.3 Discussion  

The main physical message of the experimental data shown in Figs. 3.2–
3.7 is that the observed Berezinskii–Kosterlitz–Thouless-like behavior of the 
transport properties of nanocomposites are due to two scales typical for this 
type of systems. Namely, they are (i) a significant difference between the 
geometric dimensions of the components and (ii) a p-wave superconducting 
state of the LSMO nanoparticles induced by the proximity effect.  

In bulk (three-dimensional, 3D) composite systems superconductivity has 
been studied within the percolation scenario. It is well established, when the 
grains of a superconducting material, d, are large enough, d >> ξS, their basic 
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intra-granular characteristics (critical temperature, superconducting gap, etc.) 
are not affected by the proximity of the non-superconducting component and 
remain close to the bulk value of a quantity both above and below a percolation 
threshold. For a bulk composite with roughly the same geometrical size of com-
ponents, the lattice percolation model [3.83–3.85] predicts fC = 0.16 ± 0.02 for 
the percolation threshold of the volume fraction, f, of a superconducting com-
ponent (fC being a percolation threshold of superconducting grains with the 
linear dimensions ≳ ξS). Thus, according to the conventional lattice perco-
lation model, for the nanocomposite systems under consideration with large 
grains of the superconducting material, above the percolation threshold of the 
volume fraction fC, the macroscopic transition temperature TC should not be 
strongly dependent on the contents variation. However, even for the SC/hmF 
samples with the volume fraction f ~ 0.6, i. e., about three times larger than 
the conventional percolation model predicts, there is no transition into a super-
conducting state. Moreover, as it follows for the R(T) data [3.33, 3.35] the 
transition temperature TC is strongly reduced for the samples with 80, 75, and 
70 vol. % of the superconducting component (20, 25, and 30 vol. % of LSMO), 
i. e., even at concentrations when an infinite percolating cluster of MgB2 or 
Bi2223 grains should be formed. Thus, the predictions based on the conven-
tional percolation models fail for the s-(d-)-wave SC/hmF nanocomposites 
most probably due to two factors: (i) essential difference in the components’ 
geometrical size and (ii) unconventional (spin-triplet) superconducting pro-
ximity effect.  

As is known, below the superconducting transition, an indirect (due to the 
proximity effect) coupling between constituent components emerges. In 
SC/hmF heterostructures a long-range proximity effect will be realized effec-
tively, and a triplet component of anomalous correlations should be taken into 
consideration if there is a spatial variation of the magnetization at the ferro-
magnet surface [3.23–3.26, 3.37–3.43, 3.86–3.90]. Characteristic coherence 
length of triplet correlations ξF = (DF/2πT)1/2 can be as large as ~ 100 nm at 
low temperatures. In previous works, anomalous superconductivity has been 
indeed detected in SC/hmF nanostructures [3.30, 3.38] and in SC/hmF junc-
tions [3.23, 3.25, 3.28, 3.39]. It was argued that at low temperatures, man-
ganites are thermodynamically close to a superconducting state with a triplet 
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p-wave even frequency pairing [3.28–3.30, 3.36]. Being proximity coupled to 
a singlet SC, the m = 0 triplet wave-function component is coupled in the 
manganite via the boundary condition to the singlet pairing amplitude in the 
SC counterpart. At the same time, the spin-active boundary leads to coupling 
of the m = 0 triplet component with an equal-spin, m = 1, pairing amplitude 
in the manganite. These couplings yield phase coherency of both m = 0 and 
equal-spin m = 1 triplet Cooper pairs in the hmF manganite. Dependence of 
the scale of superconducting correlations on the intrinsic magnetic field in-
homogeneity is a feature of the proximity effect in mesoscopic hmF/SC struc-
tures [3.26, 3.43, 3.44, 3.51, 3.86 - 3.90].  

Under these specific conditions, the nanocomposite’s transition to a super-
conducting state, most probably, is followed the next ‘evolution scenario’. The 
onset of superconductivity occurs independently in each SC microgranules at 
the temperature of superconducting condensate formation in the bulk SC. 
Magnetic fluxes are caused by the manganite nanoparticles’ magnetization 
and at temperatures T < ТC0 < ТCurie (LSMO) magnetic fluxes are confined to 
the manganite nanoparticles. That is, in the temperature range TBKT < T < TC0, 
a resistive state emerged in the nanocomposite is featured by a nonzero 
equilibrium concentration of Cooper pairs in the SC microparticles and frozen 
magnetic vortices created by the LSMO nanoparticles. A 3D structure is 
formed in the system. It consists of the superconducting granules covered by 
the ferromagnetic nanoparticles: –hmF–SC–hmF–SC– ‘brickwork’ structure. 
If the temperature decreases further, BKT-like superconducting correlations 
in the bulk s-(d-)-wave SC/LSMO nanocomposite emerge due to the emergence 
of the effective 2D percolation cluster of a specific superconducting state. 
Namely, the 2D supercurrent percolation is fulfilled through hmF nanopar-
ticles layer following the ‘brickwork’ scheme. Due to the proximity effect at 
magnetically inhomogeneous SC-LSMO interfaces, the superconducting state 
of the percolation layer is a mixture of s-(d-)-wave singlet and p-wave triplet 
Cooper pairs.  
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3.5 Triple-gap superconductivity of MgB2–(La, Sr)MnO3 
 nanocomposite 

Another topic of nowadays fundamental interest is a spatial inhomoge-
neity in the superconducting density of states and the superconducting state, 
which is governed by quantum phase fluctuations [3.91–3.95]. Most mean-
field theories assume that the relation Tϕ > T∆ is fulfilled between the tem-
peratures of electron pairing T∆ and the long-range phase coherency Tϕ. This 
means that global phase coherency and the energy gap appear (vanish) at the 
same temperature, mainly due to the opening (disappearing) of the gap with 
temperature. However, it has been shown (see, e. g., reviews [3.77, 3.91]) that 
for systems with low conductivity and small superfluid density (bad metals), 
the temperature of the global phase coherency Tϕ is reduced significantly and 
becomes to be comparable to or even smaller than the pairing temperature T∆. 
In this case, the critical temperature TC is determined by the global phase co-
herency, whereas a local pair condensate could exist well above TC. For high-
TC cuprates diamagnetism due to fluctuating superconducting pairs above the 
superconducting transition temperature as well as the origin of the so-called 
pseudogap still remain under discussion (see, e. g., Refs. [3.92–3.95] and 
references therein). A new stimulus for active debates in this area is motivated 
by the search for materials with triplet fluctuation superconductivity. 

At energies below the superconducting gap, the charge transport through 
a normal nonmagnetic (N) metal in contact with a SC is possible only due to 
a specific process called Andreev reflection (AR) [3.49, 3.96–3.98]. This is a 
two-particle process in which, in the N metal, an incident electron above the 
Fermi energy EF and an electron below EF with the opposite spin are coupled 
together and transferred across the interface into the SC side, forming a Cooper 
pair in the condensate. Simultaneously, an evanescent hole with opposite mo-
mentum and spin emerges in the N metal. The charge doubling at the interface 
enhances the sub-gap conductance and this phenomenon has indeed been 
observed in the case of a perfectly transparent interface. The picture is signi-
ficantly modified when spin comes into play. If the N metal is a half-metallic 
ferromagnet, there is full imbalance between spin-up and spin-down popu-
lations, which suppresses the AR and reduces the sub-gap conductance to zero.  

According to the existing publications [3.99–3.102] the charge carrier 
polarization for LCMO is large, greater than 75 %. Thus, if a supercurrent in 
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the composite is unpolarized [an s-wave or a p-wave (S = 1, m = 0) component 
of triplet pairing] the AR will be suppressed, and the sub-gap conductance will 
be reduced below the normal-state value. On the contrary, if at both sides of 
the contact the charge current is spin polarized, there is no restriction (because 
of spin) on the AR and, as in the conventional case [3.96–3.98] an excess 
current and a doubling of the normal-state conductance are observed.  

Figure 3.8 shows representative dynamic conductance spectra dI/dV = 
G(V) of micro-constrictions between In, Ag, and Nb tips and the sample 3:1 
(a configuration commonly called the ‘needle anvil’) measured at T = 4.2 K. 
At low voltages, conductance peaks corresponding to three superconducting 
gaps with energies ∆(π) = 2.0 – 2.4 meV, ∆(σ) = 8.4 – 11.7 meV, and ∆tr = 
19.8 – 22.4 meV are clearly observed. (In the figure, the position of the dI/dV 
minimum is denoted by ∆. For PCs with not too large lifetime-broadening 
effects, this value does not differ much from the proper energy gap [3.103]). 
Two of the gaps, ∆(π) and ∆(σ), were identified as MgB2 gaps (to be precise, 
as ones originating from the ∆(π) and ∆(σ) gaps of MgB2, respectively). The 
magnitude of the smallest ∆(π) gap remains in the range of the bulk MgB2 
gap [3.104]; the gap ∆(σ) was recognized as enhanced MgB2 ∆(σ) gap.  
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Fig. 3.8 – Point-contact Andreev reflection spectra of In, Ag, and Nb tips and 

MgB2/La0.67Sr0.33MnO3 (3:1) nanocomposite; T = 4.2K. Adapted from Ref. [3.30] 
 
The third gap, ∆tr, the authors [3.30] attributed to the intrinsic super-

conducting pairing in the (La, Sr)MnO3 compound. The absolute value of ∆tr 
is the same as those also detected in PCs of (La, Sr)MnO3 and (La,Ca)MnO3 
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with Pb or MgB2 [3.28, 3.29, 3.102]. The magnitude of ∆tr is more than three 
times larger than the largest ‘parents’ ∆(σ) = 6.8–7.1 meV MgB2 gap [3.104]. 
Note that the PCs’ resistivity varied by orders of magnitude, while the 
multiple-gap structure in the quasiparticle density of states, as well as the gap 
energy values, were robust features and reproduced in all PCs have been 
prepared.  

In Fig. 3.9, we present an experimental temperature dependence of the 
energy gap ∆tr(T) [3.30]. For comparison, the conventional Bardeen–Cooper–
Schrieffer BCS gap temperature behavior is shown in the figure, too. From the 
BCS relation ∆(0) = 1.76kBTC, the ∆tr(0) = 19.8–22.4 meV gap would lead to 
a superconducting state with TC ≈ 120 K. Yet, the energy gap ∆tr(T) vanishes 
as the temperature increases towards TC ≈ 39 K of MgB2. Evidently, the ex-
perimental behavior of ∆tr(T) does not follow the BCS dependence. The tem-
perature dependence of the largest gap detected, ∆tr(T), directly proves that its 
emergence is not an ‘independent’ property but is due to the superconducting 
state of MgB2, i. e., due to the proximity effect.  

The results presented in Figs. 3.8 and 3.9 convincingly show that, at low 
temperatures, a noncoherent p-wave even-frequency spin-triplet superconduc-
ting condensate already exists in half-metallic manganites. Being proximity 
coupled to the singlet SC, the m = 0 triplet component in the manganite is 
coupled via the boundary condition to the singlet pairing amplitude in the SC 
partner. 
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Fig. 3.10 – A sketch of the long-range phase coherency due to the proximity effect  

in the SC/hmF nanostructures. Adapted from Ref. [3.30] 
 
At the same time, the spin-active boundary leads to coupling of the m = 0 

triplet component with an equal-spin, m = 1, pairing amplitude in manganite. 
These couplings yield phase coherency of both m = 0 and equal-spin m = 1 
triplet Cooper pairs in the HMF with a large quasiparticle gap ∆tr (> ∆π, ∆σ). 
As an inverse effect, being proximity linked to the s-wave pairing amplitude, 
the m = 0 amplitude of the triplet superconducting state enhances the quasi-
particle gap(s) of a singlet SC. Fig. 3.10 illustrates the described mechanism 
of the long-range phase coherency due to the proximity effect in the nanocom-
posite. 

 
 
3.6 Local triplet superconductivity of half-metallic manganites 

As was noted above, the transition to the superconducting state is accompa-
nied and is caused by a rearrangement of the electronic spectrum with the 
appearance of a gap at the Fermi level. The state is characterized by a complex 
order parameter (see, e. g., reviews [3.77, 3.91]): 

∆(r) = |∆(r)|exp{iφ(r)}, (3.3) 
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where the modulus of the pairing energy, namely 2|∆(r)|, is the gap value 
in the electronic spectrum. In the mean field theory, temperatures of the elect-
ron-pairing effect, TΔ, and the long-range (global) phase coherency, Tφ, coin-
cide and yield the critical temperature, TC. This implies that the spatial varia-
tions in |∆(r)| are small, and that global phase coherence temperature Tφ is 
larger than (or equal to) TC. 

In a system with a small superfluid density (bad metals with an electron 
concentration that is substantially less than that characteristic of conventional 
metals) the spatial variations / fluctuations in the order parameter ∆(r), e. g., 
due to thermal effects, become crucial in the regions where pairing energy 
value |∆(r)| is small. As the result, in a bad metal, thermal fluctuations in the 
global phase coherency of the order parameter are the most important ones. 
The fluctuations of the order parameter phase φ(r) in mesoscopic ‘islands’ 
prevent the long-range superconductivity. Therefore, for systems with low 
conductivity and small superfluid density, the temperature of the system’s 
global phase coherency Tφ can be reduced significantly and could be smaller 
than the ‘islands’ pairing temperature TΔ. Then the superconducting transition 
temperature TC is determined by the global phase coherency, whereas the pair 
condensate could exist well above TC = Tφ < TΔ [3.77, 3.91–3.95].  

An important consequence of Cooper pairs fluctuation above the transi-
tion temperature TC is the appearance of the so-called pseudo-gap [3.77, 3.92–
3.95], i. e., a reduction of the single-electron density of states near the Fermi 
level. According to the viewpoint expressed in Ref. [3.92], the pseudo-gap 
state in high-TC cuprates could be considered as an unconventional metal, i. e., 
as a SC which has lost its phase stiffness due to phase fluctuations. Doped 
manganites belong to bad metals, and a large pseudo-gap is detected in nu-
merous experiments on manganites [3.105–3.108]. It may be suggested that at 
least a part of the observed pseudo-gap value is due to pairing without the 
global phase coherency. In cuprates, an additional argument for the local pair’s 
condensate existence at T > TC is a diamagnetism observed just above TC, i. e., 
when temperature Tφ < T < TΔ (see, e. g., Refs. [3.109, 3.110]). For manga-
nites, however, this kind of the superfluid density precursor can be strongly 
suppressed by a ferromagnetic order of the localized moments and a spin-
triplet state of the pair condensate.  
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As noted above, materials realizing spin-triplet p-wave pairing are a 
subject of special interest. This interest is motivated as systems where specific 
topologically protected quasiparticle excitations can be realized and as pro-
mising materials yielding novel technological applications. Long-range proxi-
mity effects interpreted in terms of singlet-to-triplet pairing conversion have 
been found in various SC/F systems [3.40, 3.41, 3.43, 3.51]. Among these 
systems, the half-metallic-based SC/F heterostructures, where long-range pro-
ximity effect has been experimentally observed, have attracted especial atten-
tion [3.24–3.26, 3.51]. As was shown theoretically, for the SC/F systems, 
long-range proximity effect and singlet-to-triplet pairing conversion can be 
realized due to interfacial magnetic inhomogeneities. Eschrig et al. showed 
that when normal metal is half-metallic ferromagnet, even frequency pairing 
would be mostly of the p-wave symmetry [3.111].  

These results are compelling arguments that proximity induced supercon-
ducting transition in doped manganites follows the scenario of a ‘latent’ high-
TC superconductivity in doped manganites. At low temperatures, incoherent 
superconducting fluctuations are essentially sustained in half-metallic manga-
nites. Although the local gap amplitude is large, there is no phase stiffness, 
and the system is incapable of displaying a long-range superconducting 
response. Nonetheless, a local phase rigidity (a local triplet pairing conden-
sate) survives, and, in a proximity-affected region, the singlet SC establishes 
phase coherence of the p-wave spin-triplet superconducting state of the 
manganites [3.28–3.30].  

 
 
3.7 Bosonic scenario of a local triplet superconductivity 

 of half-metallic manganites 

Let us make some suggestions concerning the mechanism of coupling 
spin-polarized conducting electrons in manganites and the origin of the quasi-
particle gap Δtr whose magnitude cannot be explained in terms of the conven-
tional proximity-effect theory.  

In the context of manganite’s half-metallic conductivity in the ferromag-
netic state, a natural question arises about triplet superconductivity due to 
magnon coupling. The replacement of a phonon by a spin wave should not 
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lead to a drastic modification of superconducting properties. However, there 
is an important difference between these couplings [3.112]. Namely, a spin-
wave excitation (magnon) carries a spin with the projection opposite to the 
ferromagnet magnetization direction and in the nonrelativistic approach, the 
projection of the total spin of both conducting and localized electrons is pre-
served. This means that if the magnon exchange results in equal-spin triplet 
pair states ∆↑ or ∆↓, neither ∆↑ state, nor ∆↓ one can exist without each other 
since the magnon carries spin |S| = 1 and thus the attraction of two electrons 
with the same spins, +1/2 (or –1/2) due to spin-wave exchange is forbidden by 
the spin conservation law. As Bulaevskii et al. showed [3.112], the spin-wave 
exchange mechanism leads to equal spin-triplet pairing but the resulting 
superconducting state is described by the two-component order parameter,  
f tr(r) = g1(r)|↑↑> + g2(r)|↓↓>, and excludes a singlet m = 0 pairing, f tr↑↓(r) = 
g0(r)(|↑↓> + |↓↑>).  

The conclusion that the magnon exchange excludes a singlet pairing is 
important in the context of the experimental results [3.28–3.31]. Broken a 
spin-rotation symmetry at s-wave SC – half-metallic manganites interface 
leads to spin-flip processes at the interfaces. Its origin depends on the micro-
scopic magnetic state at the interface, the character of local magnetic moments 
coupling with itinerant electrons, etc. (see, e. g., [3.26, 3.51] and references 
therein). Due to spin mixing at the interfaces, a spin triplet (S = 1, m = 0) 
amplitude f tr↑↓(r) = g0(r)(|↑↓> + |↓↑>) is induced by the singlet component in 
the s-wave SC, f s↑↓(r) = gs(r)(|↑↓ − |↓↑), and extends from the interface for 
about the magnetic length ξF = (DF/2πHexc)1/2 into the manganites layer. At the 
same time, triplet pairing correlations with equal spin pairs: f tr↑↑(r) = g1(r)|↑↑>, 
m = +1 or f tr↓↓(r) = g2(r)|↓↓> m = −1, are also induced (due to spin-flip pro-
cesses) in the half-metallic layer. These components decay on a ‘conventional’ 
length scale ξT = (DF/2πT)1/2 which is much larger than ξF because in typical 
cases the exchange field Hexc is much larger than TC. It is worthy to emphasis 
that only the m = 0 triplet component f tr↑↓(r) = g0(r)(|↑↓> + |↓↑>) is coupled 
via the spin-active boundary condition to the equal-spin m = 1 pairing ampli-
tudes in the half-metal. The singlet component in the s-wave superconductor, 
f s↑↓(r) = gs(r)(|↑↓ − |↓↑), being invariant under rotations around any quanti-
zation axis, cannot directly involved in the creation of triplet m = ±1 pairing 
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amplitudes in the half-metal. Taking this into account, the observed enhance-
ment of MgB2 even-frequency singlet Cooper pair coupling energy ∆(σ) means 
that in the manganite the m = 0 even-frequency triplet component exists, i. e., 
the proximity induced superconducting state is described by the two-compo-
nent order parameter, f tr(r) = g1(r)|↑↑> + g2(r)(|↑↓> + |↓↑>). The m = 0 triplet 
component ftr↑↓(r) is coupled via the boundary condition to the singlet pairing 
amplitude in the SC partner and, in this case, we deal with the ‘mutual’ proxi-
mity effect. As well, this points out that the most realistic coupling mechanism 
of the p-wave triplet superconductivity in half-metallic manganites is that 
caused by the phonon exchange.  

As already mentioned, one of the Cooper pairs fluctuation fingerprints is 
the so-called pseudogap [3.77, 3.91–3.95], the reduction of the single-electron 
density of state near the Fermi level. At the Fermi level vicinity of manganites, 
a large pseudogap is observed [3.105, 3.109, 3.113, 3.114]. This experimental 
fact supports the hypothesis that a noncoherent p-wave even-frequency spin-
triplet superconducting condensate already exists in half-metallic manganites 
at low temperatures [3.28–3.31]. Being proximity coupled to a singlet SC, the 
m = 0 triplet component in the manganite is coupled via the boundary con-
dition to the singlet pairing amplitude in the SC counterpart. At the same time, 
the spin-active boundary leads to coupling of the m = 0 triplet component with 
an equal-spin, m = 1, pairing amplitude in manganite. These couplings yield 
to a phase coherency of both the m = 0 and equal-spin m = 1 triplet Cooper 
pairs with a large quasiparticle gap ∆tr > ∆(π), ∆(σ). As an inverse effect, being 
proximity linked to the s-wave pairing amplitude, the m = 0 amplitude of the 
triplet superconducting state enhances the quasiparticle gap(s) in a singlet SC. 
Figure 3.10 illustrates the described mechanism of the long-range phase 
coherency due to the proximity effect in half-metallic manganites.  

 
 
3.8 Half-metallic manganites – a perspective platform 

 for high-temperature triplet superconductivity 

At the actual stage of the search for topological quasiparticles in con-
densed matter, it is crucially desirable to identify (i) easy-to-fabricate systems 
possessing topological states and (ii) a way by which topologically protected 
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excitations can be distinguished from spurious effects. Specifically, the reali-
zation of a topological superconducting phase and Majorana quasiparticles is 
of the grand interest because of their novelty as well as possible applications 
in quantum devices. Thereupon, a convincing proof and undoubted detection 
of Majorana quasiparticles is among the main challenges in the general trend.  

There is a variety of proposals for transforming a conventional s-wave SC 
into topological states supporting Majorana fermion excitations. For instance, 
realizations of Majorana bound states are expected in semiconducting-super-
conducting hybrid nanostructures, where the interplay between intrinsic spin-
orbit coupling, proximity induced superconductivity, and external magnetic 
field leads to the formation of zero-energy bound states [3.17–3.21, 3.115–
3.119]. An isolated zero-energy topological bound state appears in a spinless 
p-wave SC at the transition between strong- and weak-pairing phases. It is 
expected [3.119–3.123] that one or more Majorana bound states can appear at 
the opposite ends of a quantum nanoparticle wire proximity coupled to an  
s-wave SC in the presence of an applied Zeeman field. Yet, while the time-
reversal symmetry can be readily broken by a magnetic field, a spin-orbit 
coupling is too weak to effectively break the spin-rotation symmetry and to 
drive the system into topologically nontrivial phase by this Kitaev scena-
rio [3.124].  

In Ref. [3.17] Choy et. al. proposed an alternative to Kitaev route to 
Majorana fermions in s-wave SCs that does not at all require materials with 
spin-orbit coupling and external Zeeman field. The authors considered a sy-
stem formed by magnetic nanoparticles on a superconducting substrate. The 
magnetic moments are frozen, without any dynamics of their own. The nano-
particles magnetic moment breaks time-reversal symmetry as well as spin-
rotation symmetry, without the need for spin-orbit coupling in the SC. The 
superconducting substrate induces a pairing energy in the nanoparticles, so 
that the system’s single-band Hamiltonian has the same form as Kitaev spin-
less p-wave superconducting chain. The difference is that here the p-wave 
pairing is obtained from s-wave pairing due to the coupling of the electron 
spin to local magnetic moments (the proximity effect). In the nanoparticles 
wire, the transition into the topologically nontrivial superconducting phase is 
governed by the competition of two types of disorder: (i) variation in the 
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orientation of the magnetic moments on nearby nanoparticles and (ii) disorder 
in the hopping energies that localizes the states. The zero-energy bound states 
in the proximity induced p-wave superconducting gap, having a nonzero mag-
netic moment, should behave as Majorana bound states [3.17].  

In the context of Ref. [3.17] conclusions, we can suggest that nanostruc-
tures based on the s-wave SC substrate and hmF manganites nanoparticles are 
the most promising and accessible systems in which Majorana fermions can 
be generated. Indeed, all prerequisites listed in Ref. [3.17] can be realized in 
the heterostructures where magnetic nanoparticles are (La1-xRx)MnO3, R = Ca, 
Sr, … ones. Due to the ferromagnetic half-metallic state of the manganites, the 
needed p-wave superconductivity in the system is induced undoubtedly due to 
the proximity effect [3.28–3.31]. The key feature of these heterostructures is 
the magnitude of the proximity induced triplet superconducting gap Δtr, i. e., 
the magnitude of the topological pairing gap. In manganite nanoparticles, this 
gap will be more than three times larger than the largest gap among s-wave 
SCs – the ∆(σ) gap MgB2 [3.104]. Therefore, we believe that the manganite 
(La1-xRx)MnO3 nanoparticles depositing on a s-wave SC are the most promi-
sing materials where high-temperature topological superconducting states can 
be realized. However, to our best knowledge, these systems are not yet studied 
in detail. 

 
 
3.9 Conclusion 

Systematic character and repeatability of the key experimental observa-
tions that have been detected by the point-contact Andreev reflection spectro-
scopy on the superconductor-half-metallic manganite heterostructures identify 
some general physical phenomena in transport properties of proximity coupled 
singlet superconductor-half-metallic manganite nanostructures. It was found 
that superconductor–half-metallic manganite hybrids provide an experimental 
possibility to accomplish artificial materials where a topologically nontrivial 
superconducting state and Majorana fermions can be realized. The basic factor 
of these conclusions is a local (fluctuated) high-temperature triplet supercon-
ductivity in half-metallic manganites. Although the local gap amplitude is 
large, there is no phase stiffness, and the system is incapable of displaying a 
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long-range superconducting state. Nonetheless, local phase rigidity survives 
and being proximity coupled to a superconductor, the long-range coherency is 
restored. The experimental evidence of the latent spin-triplet superconducti-
vity in half-metal manganites allows to design an experimentally accessible 
way for overcoming bottleneck of spin-triplet pairing induced in proximitized 
structures of spin-singlet superconductors with time-reversal symmetry breaking 
counterparts and opens a new framework in topological superconductivity. 
Further experimental and theoretical works are needed to prove (or disprove) 
this platform for engineering topological superconductors and Majorana fer-
mions. 

The authors thank M. Belogolovskii for stimulating discussions and 
reading the manuscript. 
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4. REENTRANT INDUCED SUPERCONDUCTIVITY  
IN HYBRID STRUCTURE  

WITH HIGH BARRIER TRANSPARENCY 
 

E. Zubov1, 2 

Abstract 

Within the framework of the self-consistent effective field approximation 
of the time dependent perturbation theory, an influence of the electron 
tunneling on spontaneously induced order parameters in a hybrid structure 
«normal metal-superconductor» is considered. For a normal-metal model that 
does not take into account electron-electron scattering as well as electron-
phonon coupling, it has been obtained a critical barrier transparency corres-
ponding to the disappearance of superconductivity in the ground state. The 
presence of incoherent excitations leads to a complex relationship between the 
effects of ordering, thermal fluctuations, and tunneling. Near the critical 
barrier transparency, this can stabilize a superconducting state in the certain 
temperature regions. As a result, a reentrant superconductivity phenomenon is 
observed. The studied spectral properties of the hybrid structure reflect exis-
tence of both coherent and incoherent elementary excitations. 
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4.1 Introduction 

Despite a long history of the transport properties studies of the «normal 
metal-superconductor» hybrid structures, the problem of a rigorous quantum-
mechanical consideration of proximity effect in such systems has not yet lost 
its relevance. This is especially evident in recent years in connection with the 
search and realization of Majorana fermions based on the proximity effect in 
the system of a superconductor with an s-symmetry gap and topological 
insulator with surface states [4.1]. This type of fermions is protected from 
decoherence and is of promising importance in the formation of qubit states 
for quantum computers. The problem of superconductivity as a quantum effect 
is rather complicated from the point of view of subsequent accounting for the 
correlation effects and influence of barriers in inhomogeneous structures. To 
date, to analyze a huge array of experimental data on electron tunneling, 
a wide range of theoretical methods for studying the observed phenomena in 
hybrid structures have been developed, which are based on the well-known 
equations of Gor’kov [4.2], Bogolyubov, P. de Gennes [4.3], McMillan [4.4] 
and their semiclassical approximations [4.5, 4.6]. It should be noted that in the 
study of critical temperatures, spectral and transport properties of hybrid struc-
tures consisting of a superconductor and normal magnetic or nonmagnetic 
metals, as a rule, a linear integral relationship is used for the coordinate 
dependence of the gap function using a nonlocal kernel [4.7–4.9]. However, 
in the case of sufficiently transparent barriers, when a perturbation in the form 
of tunnel Hamiltonian is significant, it is no longer possible to consider a linear 
approximation, since the contribution of electron correlations and scattering 
may turn out to be significant. In particular, the appearance of reentrant super-
conductivity, found in the Nb/Cu1-xNix bilayers [4.10], can be associated not 
only with the ferromagnetism of a normal metal but also with the effect of 
electron tunneling through a transparent barrier. 

Earlier, we presented an effective field approximation in the framework 
of the diagrammatic method of perturbation theory for solving a wide range of 
problems in condensed matter physics [4.11]. In particular, in the zeroth 
approximation over an inverse effective radius of electron interactions, it is 
possible to build a quantum nonlinear theory of the proximity effect in a hybrid 
structure “normal metal-superconductor” with a tunnel barrier [4.12], in which 
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there are no the phenomenological parameters. Since electron-electron scatte-
ring is not taken into account in the Hamiltonian, this model corresponds to 
ballistic limit, when a mean free path is substantially greater than the film 
thickness. Such parameters of superconductivity as the coherence length or the 
penetration depth of superconducting correlations into a normal metal are 
derivatives of the theory and can be expressed in terms of the introduced 
microscopic parameters of the Hamiltonian and temperature. 

The structure of the chapter is as follows. In Section 4.2, the tunneling 
Hamiltonian of the hybrid structure «normal metal-superconductor» (FMM-
SC) with the main microscopic parameters of interactions is presented. The 
presence of ferromagnetism (FM) in the normal metal (N-metal) is also 
assumed. Further, the main goal of this work is to study the proximity effect 
for given model Hamiltonian, which is expressed in the site representation. It 
is possible if the Bloch electronic functions are replaced by localized Wannier 
functions for matrix elements. Thus, the unperturbed Hamiltonian with the 
energy of chemical potential allows us to easily average the arising correlators 
in any order of the time perturbation theory, and also to use graphical methods 
for summing diagrams in a wave space to determine the effective propagator 
lines. Section 4.3 gives a detailed calculation of the contributions to Green’s 
functions taking into account the adiabatic switching on the interactions 
caused by the tunneling Hamiltonian, as well as the appearance of imaginary 
parts responsible for electron scattering, magnitude, and phase of the sponta-
neous order parameter. The results of numerical calculations of phase diagrams 
for the inverse proximity effect and spectral characteristics of SC are presented. 
In Section 4.4, it is studied an influence the tunnel SC electrons on order pa-
rameter, excitation spectrum, and spectral density of the FMM part in the hyb-
rid structure. In Section 4.5, the main conclusions of the article are formulated. 

 
 
4.2 Hamiltonian of the «normal metal-superconductor» electron 

 system and the self- consistent order parameter 

In a general case, the Hamiltonian for considered hybrid structure can be 
written as the sum of Hamiltonians ˆ

NH , ˆ
SH  for N-metal and SC, respectively, 

as well as the tunnel contribution ˆ
TH : 
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ˆ ˆ ˆ ˆ
N S TH H H H= + + , (4.1) 

where for a N-metal in the site representation for the second quantized 
electron creation (annihilation) operators icσ

+ ( icσ ) with a spin σ 

1
, ,

ˆ
N ij i j i i

i j i
H t c c c cσ σ σ σ σ

σ σ

µ+ += −∑ ∑ . (4.2) 

Here, t1ij is the hopping integral, which determines the electron band 
energy, 1 0Jσµ µ σ= + , µ1 is the chemical potential for N-metal, 0J  is the parame-
ter of electron exchange interactions and 0 0J >  for a ferromagnet. Also, 1σ = ±  
for saturated state and 2 zσ σ= ± < >  for magnet with a mean spin zσ< > . For the 
superconducting part of this structure, we write in a general case the 
interaction Hamiltonian 

( )
2

2 , ' 2
, , '

ˆ i jiC
S ij i j ij ji i j i j i i

i j ij i

M
H t a a V n n e n n a aσ σ σ σ σ σ

σ σσ σ

µ
ω

−+ +
 
 = + − −
 
 

∑ ∑ ∑ ∑ ∑q R Rq

q q

, (4.3) 

where µ2, t2ij and ,
C

ij jiV  are the SC chemical potential, electron band energy 
and energy of the Coulomb electron repulsion in the sites with occupancies niσ 
and niσ’, ni= niσ+ ni-σ, respectively. 2

/M ωq q  is the constant of electron-phonon 
interaction [4.13] with phonon frequency ωq  and matrix element M q . It is 
known that near the Fermi level with a width of the order of the Debye energy, 
the attraction of electrons prevails over their Coulomb repulsion [4.14]. There-
fore, the second term in (4.3) can be written in the form: 

.
, '

'

ˆ el ph
El ph ij i j

ij
H V n nσ σ

σσ

−
− = −∑  (4.4) 

Spontaneous breaking of the Hamiltonian (4.4) symmetry is possible only 
in a fixed narrow energy area. Let us extract from (4.4) the order parameters 
corresponding to the superconducting phase in the form of anomalous corre-
lators i ja aσ σ

+ +
′< >  and j ia aσ σ′< > , where the symbol <…> denotes the statistical 

averaging over the total Hamiltonian (4.1). For this, we write (4.4) as follows: 
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( )( )

. .
.

' '

.

'

ˆ

{ } { } .

el ph el ph
El ph ij i i j j ij i j j i

ij ij

el ph
ij i j i j i j j i j i j i

ij

H V a a a a V a a a a

V a a a a a a a a a a a a

σ σ σ σ σ σ σ σ
σσ σσ

σ σ σ σ σ σ σ σ σ σ σ σ
σσ

− + + − + +
′ ′ ′ ′−

− + + + + + +
′ ′ ′ ′ ′ ′

= − = − =

− − < > + < > − < > + < >

∑ ∑

∑
 (4.5) 

The product of the terms in curly brackets describes the fluctuation effects 
of superconductivity, which are not considered here. Leaving only the operator 
terms in (4.5), we obtain the Hamiltonian in the molecular field approximation 

( ).
,

ˆ MF el ph
El ph ij i j j i j i i j

ij
H V a a a a a a a aσ σ σ σ σ σ σ σ

σ

− + + + +
− − − − −= − < > + < >∑ , (4.6) 

where σ' = –σ for singlet Cooper pairing (s-superconductivity). Let us 
enter a gap function  

.el ph
ij ij j iV a aσ σ σ

−
−∆ = < > . (4.7) 

Then the Hamiltonian (4.7) takes the form: 

( )*
,

ˆ MF
El ph ij i j ij j i

ij
H a a a aσ σ σ σ σ σ

σ

+ +
− − −= − ∆ + ∆∑ . (4.8) 

Now let us consider the Fourier transform for gap function (4.7), taking 
into account that 1

ii R
ia e a

Nσ σ= ∑ k
k

k

 and 
1

.el phV −
k  is the Fourier transform of the 

electron-phonon coupling parameter, where N is the number of SC sites. Then 
we have 

1 1

1 1 1

1 1

.

( ).
,2

( ) .

1

1 ,

i j j i

i j

el ph
ij ij j i

i i iel ph

i el ph

V a a

V e e e a a
N

e V a a
N

σ σ σ

σ σ

σ σ

δ

−
−

−−
−

− −

∆ = < >=

= < > =

= < >

∑

∑ ∑

k R R qR q R
k q- q q q

k qq

k R R
k-q -q- q

k q

 (4.9) 

where the sum over k1 is replaced by the sum over k = k1 + q and the 
Kronecker symbol determines the gap homogeneity. Thus, from (4.9) we 
obtain an expression for the Fourier transform of the gap function 

.el phV a aσ σ σ
−∆ = < >∑k k -q -q- q

q
 (4.10) 
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The expression (4.10) defines a self-consistent equation for the gap 
function, since the abnormal means according to Eq. (4.8) are also expressed 
in terms of ijσ∆ . Standard methods for solving the problem of finding the gap 
are based on the diagonalization of Hamiltonian (4.8) in a wave space (BCS 
Hamiltonian) using the Bogolyubov transformation. Unfortunately, such dia-
gonalization does not work for hybrid structures. As a rule, the Gor’kov 
equations for the coordinate Green’s functions are considered, which in the 
general case are inhomogeneous. It causes considerable difficulties in calcu-
lating the nonlinear contributions. In [4.11], we described a method based on 
averaging over the unperturbed site Hamiltonians 

0
ˆ

N i i
i

H c cσ σ σ
σ

µ += −∑ , (4.11) 

0 2
ˆ

S i i
i

H a aσ σ
σ

µ += − ∑  (4.12) 

for N-metal and SC, respectively. In this case, the calculation of corre-
lators in a site representation for series of the time perturbation theory with 
perturbations 0

ˆ ˆ
N N NV H H= − , 0

ˆ ˆ
S S SV H H= −  and ˆ

TH  for FMM, SC and tunnel Ha-
miltonian ˆ

TH , respectively, do not present any difficulties. Also, ˆ
TH  is written 

in a site representation as 

{ }*ˆ
i iT il l il l

il
H T c a T a cσ σσ σ

σ

+ += +∑ , (4.13) 

where ilT  is an interstitial tunnel matrix element. Thus, it is possible to 
form infinite series of expansions for the Green’s functions using the scattering 
matrix. After the Fourier transform of both the Matsubara unperturbed Green’s 
functions and interaction parameters, the integration over time and site sum-
mation is easily performed. This ultimately gives an infinite series of algebraic 
expressions for the complete Green’s functions easily summed for a certain 
type of diagrams. In particular, in the zeroth approximation over the inverse 
effective interaction radius, when loop diagrams are not taken into account, it 
is easy to summarize diagrams of the same type graphically within the frame-
work of the well-known Dyson equation. 
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4.3 Equations for Green’s functions and order parameters 
 of a superconductor 

In accordance with Hamiltonians (4.11)–(4.12), Fourier transforms of the 
unperturbed Matsubara causal Green’s functions for N-metal and a super-
conductor have the form:  

1 0 , 2

1 0 , 2

2

1
( ) ( ) (0) ( )

( )

1
( ) ( ) (0) ( )

( )

n

n

n i n

n

n q i n

n

G i T c c G i
i

G i T a a G i
i

σ σ σ ω σ

σ σ σ ω σ

τ
σ

τ

ω τ ω
β ω µ

ω τ ω
β ω µ

+

+

= − < > = −
+

= − < > = −
+

= −

= −

 

p p

q

, (4.14) 

where the symbol <….>0 denotes an averaging with Hamiltonians (4.11) 
or (4.12). The imaginary frequency iωn=iπ(2n+1)/β and 1/β=T is the tempe-
rature. 

To find the abnormal correlator <a-q-σaqσ>, which determines the spon-
taneous order parameter in an SC, it is necessary to enter the total causal 
Green’s functions: 

( ) ( ) (0) , ( ) ( ) (0) ,

( ) ( ) (0) , ( ) ( ) (0) ,

Z Ta a Z Ta a

Y Tc a Y Tc a

σ σ σ σ σ σ

σ σ σ σ σ σ

τ τ τ τ

τ τ τ τ

− − + −

− − + −

+

+

= − < > = − < >

= − < > = − < >

- -q - q - q q q q

-pq - -p - q pq p q

 (4.15) 

In the zero approximation for a self-consistent field, the above Green’s 
functions are interconnected by means of graphical equations in the Fourier 
space as shown in Fig. 4.1 where the wave lines correspond to interactions 
according to (4.1), and thin and bold straight lines reflect the frequency 
dependent Green’s functions (4.14) and (4.15) [4.11], respectively. Bold dots 
represent sums over the inner momenta of the diagram. In the analytical form, 
these equations are written as follows: 

1

*

21

*
2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) (

( )

( )

n n n
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n

n n n n

n n n n n

Z i G i Z i Z i

Z i G i G i Z i Z i

Y i G i i

T Y i

T Y i

Y
σ

σ σ σ σ

σ σ σ σ σ

σ σ

σβ

β

ω ω ε ω ω

ω ω ω ε ω ω

ω β ω ε ω

ω

ω

− − − − + −

+ − + − − −

− −

−

−−

− − −

+ −

−−

+∆

∆

= +

= − −

=

 
 
 

 
+ 

 

∑

∑



- -q - q q - q p q -pq -
p

q 2q q q -q - pq pq
p

-pq - 1- p -pq -

q

( )
( )2

*

) ( )

( ) ( ) ( ) ( ) ,
n n n

n

n

Z i

Y i G i i Z i

T

Y T
σ

σ

σ σ σ

ω

ω β ω ε ω ω

− −

+ − + −+ −

+

= − −

-p -q -q -

pq 1p pq pq q

, (4.16) 



137 

where ε1p = ε1-p, ε2q = ε2-q and Tpq are Fourier transforms of the hopping 
integrals t1ij and t2ij for N-metal, SC and tunnel matrix element, respectively. 
Note that the momentum p always refers to a N-metal, and q to SC. 

 

 
Fig. 4.1 – Graphic system of equations for total causal Green’s functions ( )nZ iσ ω−−

-q- , 
( )nZ iσ ω+−

q , ( )nY iσ ω−−
-pq-  and ( )nY iσ ω+−

pq , which determine the spontaneous order parameter 
<a-q-σaqσ> of the superconductor 
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From the system of Eqs. (4.16), in the absence of tunneling, when Til = 0, 
the trivial solutions ( ) 0nY iσ ω−− =-pq-  and ( ) 0nY iσ ω+− =pq , and the first two equations 
coincide with the Gor’kov equations. Taking tunneling into account, the 
system becomes integral and describes nonlinear proximity effects, since it 
includes infinite series of contributions to the Green’s functions from the 
tunneling matrix element. Despite the integral character of the system in Eqs. 
(4.16), it can be easily solved. To do this, from the 3-rd and 4-th equations we 
find the unknown ( )nY iσ ω−−

-pq-  and ( )nY iσ ω+−
pq  and substitute them into the first two 

equations of the above system, that gives us 

1 2
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, (4.17) 

where 
22ξ ε µ= −q q
 is the band energy of electrons relatively the Fermi level 

of the SC.  
 
It is easy to see from expressions (4.17) for the Green’s functions that the 

excitation spectrum of a superconductor in a hybrid structure is incoherent, 
since 1 ( )σϕ ω−

  and 2 ( )σϕ ω  contain the finite imaginary parts (see below), deter-
mined by the tunnel matrix element. 

The functions 1 ( )niσϕ ω−  and 2 ( )niσϕ ω
, which determine an FMM effect on a 

superconductor, are as follows: 
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Using the Green’s functions (4.17), one can find spontaneous SC gap 
function by Eq. (4.11)  

Res ( )( ( ) 1)
i i

a a Z fσ σ σβ ω ω−− < >= − − ∑-q- q -q- .  (4.19) 
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Here the symbol Res[…] denotes the residues of the Green’s function 
( )Z σ ω−−

-q-  with a factor ( ) 1f ω − , ( )( ) 1/ exp( / ) 1f Tω ω= +  is the Fermi distribution 
function. The analytical continuation ni iω ω δ→ +  for ( ) ( )n nZ i Z iσ σω ω+− −+= − −q q  allows 
us to find a spectrum and a spectral density of electron-hole excitations of the 
Cooper pair’s condensate: 

2 Im ( )( , )R Z iσ σβω ω δ−+−= +qq , (4.20) 

the coherence degree is controlled by the imaginary part of its poles. 
Obviously, the scattering of electrons depends only on the tunnel barrier. 

Note that the remaining Green’s functions describe hoppings of the con-
densate electrons and holes from SC to N-metal. Indeed, from Eq. (4.16) it 
follows 
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 (4.21) 

It can be seen from (4.21) that the indicated Green’s functions are 
proportional to the tunnel matrix elements. The coherent spectrum of electron 
and hole excitations in an N-metal is expressed as ( )1σ σω ε µ−= ± −p p  with a 
quasiparticle peak to be determined by electron tunneling. These excitations 
correspond to the well-known Andreev reflection process, since they are rea-
lized for an arbitrary direction of the electron momentum. It turns out to be the 
excitations of Andreev reflections in SC are also coherent, since the corres-
ponding Fourier component of the Green’s function ( ) ( ) (0)Z Ta cσ σ στ τ+− += − < >qp q p  
has poles determined by zeros of the function [4.11]: 

2 2
2

( )( )
( )

E E
d σ σ

σ

ω ω
ω

ω µ
− +

=
−

q q
q , (4.22) 

where 22
2( )E σ σε µ= − + ∆q q q  is the spectrum of electron excitations with 

Cooper pairing, which do not depend on the tunnel matrix element. 
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To determine the spontaneous gap accordingly to Eq. (4.19), after the 
analytic continuation ω→ω+iδ, it is necessary to calculate the functions 

1 ( )σϕ ω−  and 2 ( )σϕ ω
. Obviously, these functions are connected by the relation 

1 2( ) ( )σ σϕ ω ϕ ω− −= − −   (4.23) 

Next, we consider the simplest case 2 2T B=pq , when the tunnel matrix 

element does not depend on the wave vectors. The frequency ω is supposed to 
be complex valued and 1 1ω µ << . Taking into account that the electron density 
of states ( )S SСρ ε ε=  with the constant СS proportional to the volume VN of the 
N-metal, the calculation of integrals (4.18) is elementary and we obtain: 
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−+





, (4.24) 

where the value 2
1( )NN B ρ µΓ =  determines the barrier transparency for 

FMM electrons. It is also clear that the contribution from magnetism under the 
sign of the logarithm is infinitesimal of a higher order than 1ω µ . Therefore, 
an influence of the N-metal magnetic ordering on SC can be neglected and 
spin indices in Eq. (4.24) may be disregarded. Since the branch cut of complex 
functions (4.24) lies on the negative frequency axis ω, it is necessary to take 
into account the following relation: 

( ) ( )ln ln (arg )i signω ω π ω− − =  (4.25) 

One can write an equation for pole singularities of the Green’s functions 
(4.17) and find the gap in SC: 

[ ] [ ] 22
1 2 2 1 1

2
2( ) ( ) ( ) ( ) ( ) ( ) 0σω ω ϕ ω ϕ ω ξ ϕ ω ϕ ω ϕ ω ϕ ω ξ− + + − + − − ∆ =     q q q , (4.26) 

where 1 1( ) ( )σϕ ω ϕ ω− = 
 and 2 2( ) ( )σϕ ω ϕ ω= 

 in accordance with aforesaid. For-
mally, this equation can be considered as quadratic with respect to the complex 
frequency ω. It allows to write the implicit solution in the form  
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(arg )1 12 ln (arg )
2 4 2N N Nsigni i signσ
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= − Γ ± − Γ + Γ + ∆q
q q q q q  (4.27) 

Unfortunately, Eq. (4.27) is transcendental relative to the unknown σω±
q . 

However, it is easy to obtain solutions for both electron and hole excitations 
by the iteration procedure. As a start, it is necessary to set E iσσ δω = +qq  that cor-
responds to the analytic continuation of the Green’s functions to the complex 
upper half-plane. The iterative procedure for calculating the roots determines 
solutions with imaginary parts of the opposite sign for each root. This uncer-
tainty for the roots appears due to the replacement iω ω δ→ +  at the analytic 
continuation of Green’s functions (4.17) for each iteration step in Eq. (4.27) 
because logarithm gives roots on opposite edges of the branch cut. It is clear 
that the first step of the iteration determines the sign of the imaginary part of 
the pole, and the next step of the opposite sign is associated with the violation 
of the selected condition for interaction adiabatic switching on. It is interesting 
to note that in [4.12] only the 1-st iteration step was applied to Eq. (4.27). As 
will be shown below, the rigorous self-consistency over frequencies σω±

q  
drastically changes the order parameters pointing out on a significant contri-
bution 14ln σω µ±  q  to the proximity effect in the FMM-SC structure. 
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Fig. 4.2 – Real (a) and imaginary (b) parts of the electron and hole excitations spectrum 

σω+
q  and σω−

q  (solid curves 1 and 2, respectively) for the FMM-SC hybrid structure,  
∆ = 6 К, ΓN = 3.495 K and µ = 6 eV, as well as the corresponding coherent BCS 

spectrum (dashed curves) 
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Fig. 4.2 shows real and imaginary parts of the poles as a function of the 
electron energy ξq relative to the Fermi energy level for the gap ∆ = 6 K, 
barrier transparency ΓN = 3.49 K and µ1 = 6 eV (solid lines). The BCS spect-
rum (dashed line) is demonstrated for comparison. 

To find the solution ∆qσ from Eq. (4.10) after finding the self-consistent 
solutions σ σω ω+ =q q  and σ σω ω− = −q q  for the poles ( )Z σ ω−−

-q-  from Eq. (4.19), it is ne-
cessary to make an obvious replacement 1 1( ) ( )σϕ ω ϕ ω+=  q  and 2 2( ) ( )σϕ ω ϕ ω+=  q  in Eq. 
(4.26). Note that Eq. (4.26) is invariant under the substitution σ σω ω+ −→q q  (see Eq. 
(4.23)). Thus, the anomalous Green’s function takes the simplest form  
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ω ω ω ω
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q q
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q- , (4.28) 

that gives the order parameter  
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q
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The gap function is a complex value for ΓN ≠ 0, and for ΓN = 0 it coincides 
with the BCS theory result. Then, according to Eq. (4.10), we obtain a self-
consistent equation for the complex gap ∆qσ: 
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Assuming that the electron-phonon interaction parameter .el phV U− =k -q  is 
nonzero near the Fermi level in a narrow energy region of the order of ± ωD, 
where ωD is the Debye frequency, let us denote the electron-phonon coupling 
constant for SC by λ=ρF(µ2)U. Here ρF(µ2) is the electron density of states at 
the Fermi surface. Obviously, ρF(µ2) does not depend on the sample volume. 
Then one can obtain the integral complex equation for the spontaneous gap 
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∫ q q
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k  (4.31) 

In the simple case of the s-wave gap with a spatially homogeneous phase, 
i

Se ϕ
σ =∆ ∆ = ∆k , where S σ∆ = ∆k , and φ is determined by the rest of the integrand 
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in Eq. (4.31), which depends on ΓN. In the approximation φ = const and at 
ΓN = 0, this phase is equal to zero. For a gap under the integral one can put 

0i
Seσ = ∆∆q . Taking the modulus from both sides of Eq. (4.31) with account for 

the indicated replacement, we obtain the equation for the gap modulus: 

1 1 tanh
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q

, (4.32) 

Since the modulus of the right-hand side of Eq. (4.32) is equal to 1, it can 
be assumed that the corresponding complex number also determines the gap 
phase ϕ that makes it possible to write 
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q

q
 (4.33) 

Thus, using Eqs. (4.32)–(4.33), it is able to calculate an absolute value of 
the spontaneous gap ∆S of SC, its phase ϕ, and the critical temperature TC of 
the phase transition, taking into account an influence of the effects of in-
coherent electrons tunneling in a normal metal. 

In Fig. 4.3a, the dependence of the spontaneous gap ∆S of the Sn super-
conductor on the barrier transparency ΓN at the temperature T = 0 (solid curve), 
which describes an inverse proximity effect, is shown. The dashed curve was 
obtained for the poles in Eq. (4.27) obtained at the first step of the itera-
tion [4.12]. 

The critical value of transparency cr
N N=Γ Γ = 3.495 K, above which the 

superconductivity is destroyed, is determined from the equation for TC at 
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, (4.34) 

where the frequency 
1( )) 0Re(ω ξ >q  and 1( )ω ξq  is the self-consistent solution 

of Eq. (4.27) at 0σ =∆q . Near the high transparency a role of cooperative 
phenomena associated with electron-hole scattering by a barrier increases 
significantly, that is indicated by the order parameter phase (see Fig. 4.3b). On 
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the other hand, the temperature fluctuations partially stabilize the supercon-
ducting state, since high-energy electrons from the normal metal are more 
strongly dissipated. Therefore, with decreasing temperature, an area of the or-
dered phase for a highly transparent barrier narrows. In general, the state of 
itinerant electrons itself is rather complex, that is reflected in the form of a 
nonmonotonic behavior of the phase transition critical temperature TC, as well 
as an appearance of the reentrant superconductivity in certain temperature areas. 
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Fig. 4.3 – Dependence of the spontaneous gap ∆S (а) and its phase (b) of superconductor Sn 
on the barrier transparency ΓN at the temperature T = 0 (solid curve).  

The dashed curve reflects the same dependence but without self-consistency over the 
poles from Eq. (4.27) (the first iteration step in Eq. (4.27) [4.12]).  

The parameters values for tin are as follows: λ = 0.245, ωD =195 К, µ1= 6 eV 
 
Fig. 4.4 shows that the critical temperature TC at cr

N NΓ Γ  for FMM-Sn and 
FMM-Pb hybrid structures is the multiple-valued function of ΓN. Also, TC 
strongly fluctuates relative to small changes in ΓN, when approaches the zero 
temperature. With further growth ΓN, TC even increases but in this case, super-
conductivity at low temperatures disappears, and the high-temperature area of 
the nonzero order parameter gradually narrows to zero.  
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Fig. 4.4 – Phase diagram of FMM-Sn and FMM-Pb structures (curves 1 and 2, 

respectively). For Pb, the values µ2 = 9.9 eV, λ = 0.39, cr
NΓ  = 6.105 K and ωD = 96 K 

are taken. The inset shows the function ( , )NF T Γ  from Eq. (4.34) at 3.495cr
N N= =Γ Γ  and 

low T, the zeros of which determine TC of the superconductor 

0 1 2 3 40

2

4

6

5

 

 

4
3

2

∆ S, 
K

T, K

1

 
Fig. 4.5 – Temperature dependences of the spontaneous gap ΔS of the normal metal-tin 
structure at barrier transparency values NΓ = 0, 1.8, 2.65, 3.495, and 4.25 K (curves 1–

5, respectively) with the parameter values from Fig. 4.3 
 

In Fig. 4.5, temperature dependences of the gap ΔS of tin in N-metal-Sn 
hybrid structure are shown for different values of the barrier transparency ΓN. 
It can be seen from the figure that at 𝛤𝛤𝑁𝑁 ∼ 𝛤𝛤𝑁𝑁

𝑐𝑐𝑐𝑐 the order parameter exists in 
certain temperature regions, i. e., in this case an emergence of reentrant super-
conductivity is possible. With decreasing temperature, as well as with in-
creasing ΓN, the area of the superconductivity existence narrows. Also, near 
one of the critical temperatures, a two-gap state is possible, that may indicate 
a first-order phase transition. Since the phase of the gap is directly related to 
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the incoherent scattering of tunnel electrons by the barrier, its temperature 
dependences for different transparencies ΓN are of interest.  

Figure 4.6 shows temperature dependences of phases for gap functions 
from Fig. 4.5. It can be seen that the phase near the “left” critical temperature, 
increases sharply while near the “right” one, it decreases monotonically until 
abruptly disappearing when ΔS = 0. Thus, the presented dependences TC and 
ΔS reflect complex nature of the relationship between incoherent tunneling 
electron scattering, thermal fluctuations, and coherent Cooper pairing. 
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Fig. 4.6 – Temperature dependences of the gap phase φ with moduli ΔS from Fig. 4.5 

for transparencies NΓ  = 1.8, 3.495 and 4.25 K (curves 1–3, respectively)  
and with the parameter values from Fig. 4.3 
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In Fig. 4.7, critical temperatures (according to the data of Ref. [4.15]) and 

the calculated transparencies 𝛤𝛤𝑁𝑁
𝑐𝑐𝑐𝑐 for series of superconductors are shown. It 

can be seen that with the exception of Nb, the values of ТС and cr
NΓ  differ 
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insignificantly. Thus, one can say that the critical barrier transparency is 
mainly determined by the value of TC, and the reentrant superconductivity is 
possible with such a high transparency. 

The expression for the spectral density of states ( , )Rσ ωq  from Eq. (4.20) 
takes the form: 
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q , (4.35) 

where 22( ) ( ) SE ω ωξ= + ∆

qq , 0( ) ( , )Nξ ω ωξ ϕ+ Γ=q q , ( )θ ω  is the Heaviside step 
function, and 0( , )Nϕ ω Γ  is the function from Eqs. (4.24). Let us define the 
homogeneous spectral density as  

2( )( ) ( , ) ( , )S
U

D

D
SR R d R

ω

σ σ
ω

ρ µ ξω ω ω
−

= =∑ ∫ q
q

q q , (4.36) 

where 2( )Sρ µ  is the bulk electron density of states of a SC metal at the 
Fermi level. 
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Fig. 4.8 – Frequency dependences of the homogeneous spectral density ( )R ω  from 

Eq. (4.35) in units ρS(µ2) for the superconductor in a hybrid structure  
“normal metal-Sn”: a) at the temperature 0T =  and ΓN = 0 (ΔS = 6.6 K, dashed line), 0.2, 
1.0, 2.0, 3.0 and 3.44 K (ΔS = 6.57, 6.32, 5.44, 3.50, 1.54, solid lines 1–5, respectively); 
b) at the critical transparency cr

N N=Γ Γ = 3.495 K and T = 1.625, 1.7, 2.4, 3.1 (ΔS = 1.7, 
2.53, 3.51, 2.34, curves 1–4, respectively) 
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In Fig. 4.8 the frequency dependences of a homogeneous spectral density 
of the superconductor Sn at the temperature T = 0 K for different ΓN values 
and at critical transparency 𝛤𝛤𝑁𝑁 = 𝛤𝛤𝑁𝑁

𝑐𝑐𝑐𝑐 = 3.495 K in the temperature area from 
1.6 to 3.1 K, where the reentrant superconductivity is realized, are shown. It 
can be seen from Fig. 4.8a that for small ΓN the ( )S

UR ω  is close to the 
conventional ( )SRσ ω  for a homogeneous superconductor: 

2

22

2 ( )
( ) S

S

SRσ
πρ µ ω

ω
ω

=
− ∆

 (4.37) 

With increasing ΓN, the spectral density ( )R ω  approaches the value of 

22 ( )Sπρ µ  that corresponds to N-metal and reflects the inverse proximity effect. 
In Fig. 4.7b, ( )R ω  is shown at the critical transparency 𝛤𝛤𝑁𝑁

𝑐𝑐𝑐𝑐 = 3.495 K, and in 
the temperature area of the reentrant superconductivity appearance. It can be 
seen from the figure that in this case, due to a high barrier transparency, an 
influence of the N-metal on the spontaneous order parameter is quite signi-
ficant. Also, due to the jump at the singular point ω = 0, ( )R ω  is asymmetric 
near the origin. The presented dependences are in a good agreement with the 
known experimental data [4.16]. 

 
 
4.4 Proximity effect in a ferromagnetic metal 

In this subsection, we will consider an influence of SC on a FMM, i. e., a 
proximity effect associated with the emergence of an induced gap in the 
specified metal. It was shown above, that the magnetic order of an N-metal 
has a negligible effect on the SC. It turns out that the SC significantly affects 
both transport in a metal due to the proximity effect and its spectral properties. 
In a similar way, we can obtain expressions for corresponding electron 
Green’s functions of a metal using the induced order parameter c cσ σ−< >-p p , 
spectrum of excitations, and their damping. The details are presented in the 
work [4.11]. Therefore, we can write down the expressions for the Fourier 
transforms of the retarded anomalous ( ) ( ) (0)Y Tc cσ σ στ τ−− = − < >p -p- p  and conventional 

( ) ( ) (0)Y Tc cσ σ στ τ−+ = − < >+
p p p  Green’s functions of the N-metal: 
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where 
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 p p p , (4.39) 

11ξ ε µ= −p p , 2
2( )SS Bρ µΓ =  is the barrier transparency for SC condensate 

electrons. Also, we have the following equations 
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, (4.40) 

where 22( )b ω ω= − ∆ . The spectrum of excitations is found from pole 
singularities of the indicated Green’s functions, i. e., at the condition 

( ) 0iσ ω δΩ + =p  that gives an equation for the resonance frequencies ω with 
account for the analytical continuation ω > ω + iδ: 
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(4.41) 

The transcendental Eq. (4.41) has complex roots 1σω p  and 2σω p , which are 
determined numerically by the iteration procedure. 
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Fig. 4.9 – Real (a) and imaginary (b) parts of the excitation electron frequencies 1σω p  

(dark circles and triangles) and 2σω p  (open circles and triangles) as functions  
of the electron energy ξ p  with the barrier transparency ΓS = 5 K, the gap ΔS = 6.6 K  

and the ferromagnetic exchange J0 = 0 and 100 K (circles and triangles, respectively) 
 
Fig. 4.9 shows results of the calculations for 1σω p  and 2σω p  as a function of 

energy ξ p  for both paramagnetic and ferromagnetic N-metals. It can be seen 
that for a paramagnet in a certain range of values ξ p  and at frequencies ω < ∆ , 
the gap is induced in the N-metal as a realization of the proximity effect with 
a nonzero anomalous order parameter c cσ σ−< >-p p , which is suppressed by the 
ferromagnetic exchange. Note that the correlator c cσ σ−< >-p p  does not depend on 
the electron-phonon coupling constant in the N-metal and is proportional to 
the gap Δ, since the N-metal is not a superconductor. On the whole, the spect-
rum is incoherent for nonzero ΓS. At the same time, electron excitations with 
frequencies ω < ∆  are coherent. Let us consider this issue in more detail, since 
it is necessary for the correct calculation of the corresponding spectral density.  

Indeed, it is easy to see that at ω < ∆  the tunnel functions (4.40) are real. 
The equation ( ) 0σ ωΩ =p  is quadratic relatively unknown ξ p  for the integrand 
pole singularities of the homogeneous spectral density ( )N

UR ω : 
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D

D
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σ σ
ω

ρ µ ξω ω ω
−

= =∑ ∫
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 

p
p

p p , (4.42) 
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where 2 Im ( )( , )R Y iσ σβω ω δ−+−= + pp  and Dω  is Debye frequency for N-metal. 
That is why one can write its solutions 1( )ξ ω  and 2 ( )ξ ω  in the form: 

( ) 2 2
1,2 0 0

2

( ) 1( ) 2 ln
4 4( ) SS S
b

b
J Jω πωξ ω σ σ

µ ω
ω ω π
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        

+ + Γ= Γ ± + + Γ −




, (4.43) 

where 2 2( ) Sb ω ω= ∆ − . Evidently, Eq. (4.43) gives poles on the real 
frequency axis if the radical expression is non-negative. Consider the simplest 
case J0 = 0. Then at 

{ }
2 2

2
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g
ω ω

ω
π ω

+ ∆
Γ ≤ =

∆ −
 (4.44) 

we have the coherent spectrum, if Sω < ∆  and 1
0( ) ( )S Sgω ω−> Γ = Γ , where  

g-1(x) is the inverse function from Eq. (4.44). The numerical analysis with 
analytical continuation iω ω δ→ +  shows that 1(Im( ( ))) ( )sign i signξ ω δ ω+ =  and 

2(Im( ( ))) ( )sign i signξ ω δ ω+ = − . In accordance with the Landau bypass rule, it is easy 
to find the spectral density of coherent electron excitations in N-metal for 
frequencies Sω < ∆ . 
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. (4.45) 

Fig. 4.10 shows the spectrum of coherent electronic excitations ω1,res and 
ω2,res from Eq. (4.43) in a paramagnetic N-metal at ΔS = 6.6 К, ΓS = 0.5 and 
5 К in the frequency region ωi,res < ΔS, as well as the corresponding homo-
geneous spectral densities of coherent and incoherent excitations from 
Eq. (4.41) at iσω p  > ΔS. In Fig. 4.10a one can see that at ω < ΔS in the N-
metal, a forbidden band is also formed. Its width depends both on the barrier 
transparency and on the SC gap. Also, in this case, the induced gap does not 
depend on the electron-phonon coupling constant in the N-metal. The main 
energy interval of electrons scattered by the barrier is assumed to be near the 
Fermi level with a width of the order of twice the Debye frequency. The 
spectral density in Fig. 4.10b reflects the coherence of the indicated excitations 
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with an increase in the quasiparticle peak as one approaches the boundaries of 
the forbidden band of the SC and N-metal. It is interesting to note that in the 
forbidden zone of the N-metal, i. e., at 0 ( )Sω ω< Γ , in contrast to the SC, there 
are purely complex poles of the Green’s function ( )Y iσ ω δ−+ +p  that point out on 
strong electrons scattering. It can be shown that the corresponding spectral 
density is identically equal zero, as in the SC. 
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Fig. 4.10 – (a) Spectrum of coherent electron excitations ω1,res and ω2,res in a 

paramagnetic N-metal at ∆  = ∆S = 6.6 К and ΓS = 0.5 (curves 1 and 2, respectively) 
and 5 K (curves 3 and 4, respectively) at frequencies iσω p  > ∆S; (b) corresponding 

homogeneous spectral densities of incoherent excitations in the area iσω p > ∆S at ΓS = 
0.5 and 5 K (solid curves 1 and 2, respectively) and of coherent excitations from 

Fig. 4.10a at ΓS = 0.5 and 5 K (dark and light points, respectively). The straight line 
3 corresponds to the spectral density value 2π in units 1( )Nρ µ  for an N-metal  

with a coherent spectrum 
 
The problem considered above corresponds to the simplest case when 

there is no electron-phonon interaction in the N-metal. Here, it is necessary to 
take into account an effective field in the N-metal formed by the order 
parameter c cσ σ−< >-p p  with a corresponding energy gap function 

.el phV c cσ σσ
−

−= < >∆ ∑ 

k - p -p p
q

k , (4.46) 

despite σ∆ k  being induced by the effective field of the SC. However, it can 
be assumed that the induced effective field in the N-metal weakly affects the 
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self-consistent SC order parameter, especially for highly transparent barriers. 
Indeed, the induced homogeneous gap function N σ∆ = ∆ k  is represented in the 

form: 
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, (4.47) 

where 1σω p  and 2σω p  are the roots of Eq. (4.41). Fig. 4.11 shows the depen-
dences of the gap ΔN on the SC transparency ΓS at temperature T = 0 for va-
rious values of ΓN in the “Al–Sn” hybrid structure where the values λ = 0.175 
and Dω = 423 K are taken for Al [4.17]. It can be seen that with increasing ΓS 
the induced ΔN increases and then decreases to a value which then weakly 
depends on electron tunneling. Also, with increasing ΓN, there is a decrease in 
ΔN. Note that the value of the spontaneous gap ΔS in the absence of tunneling 
is equal to 6.6 K, i. e., significantly exceeds ΔN. 

0 4 8 12
0

1

2

3

4

3

2

 
 

∆ Ν, 
Κ

ΓS , K

1

 
Fig. 4.11 – Gap function ΔN as a function of the SC transparency ΓS at the temperature 
T = 0 for different values of the barrier transparencies ΓN of the N-metal equal to 0.2, 1, 

2.5, and 3.4 K (curves 1–4, respectively) 
 
In Fig. 4.12, temperature dependences of the induced in Al gap function 

with ΓN = 2.65 (a) and cr
N N=Γ Γ =3.495 K (b) are presented. It can be seen from 

Fig. 4.12a that with increasing ΓS the gap ΔN increases and then decreases in 
accordance with Fig. 4.11. In this case, only for large transparencies ΓS a 
nonmonotonic temperature dependence of ΔN is observed, and for small ΓS the 
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induced gap function decreases monotonically with increasing T. Fig. 4.12b 
shows the temperature dependences of reentrant induced superconductivity at 
the critical value ΓN, reflecting a rather complex process of the proximity 
effect realization in the given hybrid structure.  
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Fig. 4.12 – Temperature dependences of the induced in aluminum gap function ΔN with 
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3.5, and 10 K (curves 1–5, respectively); b) 0.1 (dark points), 0.5 (light points), 1.5 
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The dotted curve corresponds to spontaneous reentrant superconductivity at the critical 
transparency ΓN = 3.495 in Fig. 4.5 
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At the end, let us study the FM exchange effect on the gap in the N-metal. 
As mentioned above, the exchange interaction shifts energy bands up and 
down, depending on the sign of the spin parameter σ, and decreases the gap as 
well (see Fig. 4.9). Fig. 4.13 shows the gap function ΔN as a function of the 
transparency of SC ΓS at temperature T = 0 for various values of the exchange 
interaction parameter J0 and spin indices σ equal to 0 (curve 1) and 6 K (curves 
2 and 3 at σ = 1, –1, respectively). It can be seen that at J0 < ΔS in area of the 
gap maximum for FM the exchange suppresses ΔN, although for high transpa-
rencies the decrease in ΔN is not so significant. Also, the gaps for the spins σ = 
1 and σ = –1 differ significantly, that is caused by the asymmetric exchange 
shift of the electron energy bands with corresponding spins. For J0 > ΔS the 
difficulties arise in calculating ΔN at low transparencies ΓS due to oscillations 
of the integrand in Eq. (4.47). Therefore, curve 4 at J0 = 10 K in Fig. 4.13 ends 
abruptly at ΓS = 4 K. 

 
 
4.5 Conclusions 

In this chapter, the application of time perturbation theory to a model, in 
which a self-consistent uniform effective field formed by the electron-phonon 
coupling of SC induces an order parameter in a N-metal due to electron 
tunneling, has been considered. Electron-electron scattering has not been 
taken into account that is true for tunnel areas with linear sizes, which do not 
exceed an electron mean free path.  

It was found that at the critical transparency ΓN values of the order of the 
SC critical temperature TC, tunneling electrons of the N-metal destroy the 
spontaneous superconductivity in the ground state. The presence of incoherent 
excitations leads to a complex relationship between the ordering effects, ther-
mal fluctuations, and tunneling, which in the vicinity of 𝛤𝛤𝑁𝑁 ∼ 𝛤𝛤𝑁𝑁

𝑐𝑐𝑐𝑐 can stabilize 
the superconducting state in certain temperature ranges. Thus, the phenomenon 
of the reentrant superconductivity is realized. The study of the direct proximity 
effect showed that a dimensionless order parameter is induced in the N-metal 
in the form of an anomalous correlator ,which determines a gap in the 
spectrum of electron excitations independently of the N-metal effective field. 
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This field automatically exists when the electron-phonon interaction in this 
subsystem is taken into account.  

The performed numerical calculations for Al showed that the induced 
energy gap function is significantly smaller than a gap without electron-
phonon coupling. It was found that the induced gap first increases and then 
saturates at high transparency SΓ  values. This means that a further growth in 
the volume of the superconducting part of the hybrid structure has a small 
impact on the proximity effect. Also, in the area of the gap ΔN growth as a 
function of SΓ , the FM exchange decreases ΔN value. The gaps for spin indices 
σ = 1 and σ = –1 differ significantly, that is related to the asymmetric exchange 
shift of the electron energy bands with corresponding spins. Studied spectral 
properties of the hybrid structure are in a good agreement with experimental 
data and also reflect the existence of both coherent and incoherent elementary 
excitations in certain frequency ranges. 
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